Chemistry: Structure and Properties Custom Edition for Rutgers University General Chemistry
15th Edition
ISBN: 9781269935678
Author: Nivaldo J. Tro
Publisher: Pearson Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 82E
cis-2-Butene isomerizes (changes its structure) to trans-2-butene via the reaction:
- If isomerization requires breaking the pi bond, what minimum energy is required for isomerization in J/mol? In J/molecule?
- If the energy for isomerization comes from light, what minimum
frequency of light is required? In what portion of theelectromagnetic spectrum does this frequency lie?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Bond dissociation energies are often measured by determining the wavelength of ultraviolet photons needed to cause a covalent bond between two atoms to break. A single photon absorbed by a molecule will cause the bond to break between two atoms. If a bond dissociation energy is 450 kJ/mole, what wavelength of photon, in nm, will cause the bond to break?
Carbon-carbon bonds form the “backbone” of nearly everyorganic and biological molecule. The average bond energy of the C−C bond is 347 kJ/mol. Calculate the frequency and wave-length of the least energetic photon that can break an average C−C bond. In what region of the electromagnetic spectrum is this radiation?
Carbon-carbon bonds form the “backbone” of nearly every organic and biological molecule. The average bond energy of the C¬C bond is 347 kJ/mol. Calculate the frequency and wavelength of the least energetic photon that can break an average C¬C bond. In what region of the electromagnetic spectrum is this radiation?
Chapter 7 Solutions
Chemistry: Structure and Properties Custom Edition for Rutgers University General Chemistry
Ch. 7 - Determine the hybridization about 0 in CH3OH.Ch. 7 - Determine the hybridization about C in H2CO.Ch. 7 - According to the valance bond theory, which kind...Ch. 7 - Use molecular orbital theory to determine the bond...Ch. 7 - Use molecular orbital theory to predict which...Ch. 7 - Use molecular orbital theory to determine which...Ch. 7 - Which hybridization scheme occurs about nitrogen...Ch. 7 - Prob. 8SAQCh. 7 - Prob. 9SAQCh. 7 - Prob. 10SAQ
Ch. 7 - Which type of orbitals overlap to form the sigma...Ch. 7 - Prob. 12SAQCh. 7 - Prob. 1ECh. 7 - What is a chemical bond according to valence bond...Ch. 7 - In valence bond theory, what determines the...Ch. 7 - In valence bond theory, the interaction energy...Ch. 7 - What is hybridization? Why is hybridization...Ch. 7 - How does hybridization of the atomic orbitals in...Ch. 7 - How is the number of hybrid orbitals related to...Ch. 7 - Sketch each hybrid orbital sp sp2 sp3 sp3d sp3d2Ch. 7 - Prob. 9ECh. 7 - Name the hybridization scheme that corresponds to...Ch. 7 - What is a chemical bond according to molecular...Ch. 7 - Explain the difference between hybrid atomic...Ch. 7 - What is a bonding molecular orbital?Ch. 7 - Prob. 14ECh. 7 - What is the role of wave interference in...Ch. 7 - Prob. 16ECh. 7 - Prob. 17ECh. 7 - Prob. 18ECh. 7 - Prob. 19ECh. 7 - Prob. 20ECh. 7 - Prob. 21ECh. 7 - When applying molecular orbital theory to...Ch. 7 - In molecular orbital theory, what is a nonbonding...Ch. 7 - Write a short paragraph describing chemical...Ch. 7 - Prob. 25ECh. 7 - Prob. 26ECh. 7 - Prob. 27ECh. 7 - Prob. 28ECh. 7 - Prob. 29ECh. 7 - Prob. 30ECh. 7 - The valence electron configurations of several...Ch. 7 - The valence electron configurations of several...Ch. 7 - Draw orbital diagrams (boxes with arrows in them)...Ch. 7 - Draw orbital diagrams (boxes with arrows in them)...Ch. 7 - Prob. 35ECh. 7 - Draw orbital diagrams (boxes with arrows in them)...Ch. 7 - Which hybridization scheme allows the formation of...Ch. 7 - Which hybridization scheme allows the central atom...Ch. 7 - Write a hybridization and bonding scheme for each...Ch. 7 - Write a hybridization and bonding scheme for each...Ch. 7 - Write a hybridization and bonding scheme for each...Ch. 7 - Write a hybridization and bonding scheme for each...Ch. 7 - Write a hybridization and bonding scheme for each...Ch. 7 - Write a hybridization and bonding scheme for each...Ch. 7 - Consider the structure of the amino acid alanine...Ch. 7 - Consider the structure of the amino acid aspartic...Ch. 7 - Sketch the bonding molecular orbital that results...Ch. 7 - Sketch the antibonding molecular orbital that...Ch. 7 - Draw an MO energy diagram and predict the bond...Ch. 7 - Draw an MO energy diagram and predict the bond...Ch. 7 - Sketch the bonding and antibonding molecular...Ch. 7 - Sketch the bonding and antibonding molecular...Ch. 7 - Using the molecular orbital energy ordenng for...Ch. 7 - Using the molecular orbital energy ordering for...Ch. 7 - Apply molecular orbital theory to predict if each...Ch. 7 - Apply molecular orbital theory to predict if each...Ch. 7 - According to MO theory, which molecule or ion has...Ch. 7 - According to MO theory, which molecule or ion has...Ch. 7 - Draw an MO energy diagram for CO. (Use the energy...Ch. 7 - Draw an MO energy diagram for HCI. Predict the...Ch. 7 - Prob. 61ECh. 7 - Prob. 62ECh. 7 - Prob. 63ECh. 7 - Prob. 64ECh. 7 - Prob. 65ECh. 7 - Prob. 66ECh. 7 - For each compound, draw the Lewis structure,...Ch. 7 - For each compound, draw the Lewis structure,...Ch. 7 - Amino acids are biological compounds that link...Ch. 7 - The genetic code is based on four different bases...Ch. 7 - The structure of caffeine, present in coffee and...Ch. 7 - The structure of acetylsalicylic acid (aspirin) is...Ch. 7 - Draw a molecular orbital energy diagram for CIF....Ch. 7 - Draw Lewis structures and MO diagrams for CN+, CN,...Ch. 7 - Bromine can form compounds or ions with any number...Ch. 7 - The compound C3H4 has two double bonds. Describe...Ch. 7 - How many hybrid orbitals do we use to describe...Ch. 7 - Prob. 78ECh. 7 - In VSEPR theory, which uses the Lewis model to...Ch. 7 - The resuts of a molecular orbital calculation for...Ch. 7 - Prob. 81ECh. 7 - cis-2-Butene isomerizes (changes its structure) to...Ch. 7 - The ion CH5 + can form under very special...Ch. 7 - Neither the VSEPR model nor the hybridization...Ch. 7 - Prob. 85ECh. 7 - The most stable forms of the nonmetals in groups...Ch. 7 - Consider the bond energies of three iodine...Ch. 7 - How many atomic orbitals form a set of sp3hybrid...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- hat is the enthalpy change for a process? Is enthalpy a state function? In what experimental apparatus are enthalpy changes measured?arrow_forwardhat does temperature measure? Are the molecules in a beaker of warm water moving at the same speed as the molecules in a beaker of cold water? Explain? What is heat? Is heat the same as temperature?arrow_forwardThese UV photons can break chemical bonds in your skin to cause sunburn- a form of radiation damage. If the 330 nm radiation provides exactly the energy to break an average chemical bond in the skin, estimate the average energy of these bonds in kJ/mol.arrow_forward
- Consider the following data for phosphorus: g 30.974 mol atomic mass electronegativity 2.19 kJ 72. mol electron affinity olo kJ 1011.8 mol ionization energy 18 Ar kJ 0.64 mol heat of fusion You may find additional useful data in the ALEKS Data tab. Does the following reaction absorb or release energy? release absorb (1) P (g) P(g) + e Can't be decided with the data given. Is it possible to calculate the amount of energy absorbed or released by reaction (1) using only the data above? yes no If you answered yes to the previous question, enter the amount of energy absorbed or released by reaction (1): |kJ/mol Does the following reaction absorb or release energy? release absorb + (2) P(g) P (g) + e Can't be decided with the data given. yes Is it possible to calculate the amount of energy absorbed or released by reaction (2) using only the data above? no If you answered yes to the previous question, enter the amount of energy absorbed or released by reaction (2): |kJ/molarrow_forwardActivating C-H bonds is a popular research target for chemists, particularly for pharmaceuticals. Older methods used light to initiate the bond breaking. Breaking 1 mole of C-H bonds requires about 413 kJ. What would be minimum frequency of a photon needed to break a single (1) C-H bond? O 103 × 1015 Hz 5.25 × 1015 Hz O 4.98 × 1014 Hz O 8.72 × 1014 Hz хarrow_forward5. The reason there is danger in exposure to high-energy radiation (e.g., ultraviolet and X rays) is that the radiation can rupture chemical bonds. In some cases, cancer can be caused it. A carbon-carbon single bond has a bond energy of approximately 348 kJ per mole. What wavelength of light is required to provide sufficient energy to break the C-C bond? In which region of the electromagnetic spectrum is this wavelength located?arrow_forward
- Given the following bond energies F-F 157 kJ/mol Cl-CI 243 kJ/mol F-CI 193 kJ/mol estimate AH for this reaction. F2(g) + Cl2(g) → 2CIF(g)arrow_forward4.) The dissociation energy of a carbon-bromine bond is typically about 276 KJ/mol. What is the maximum wavelength of photons that cause C---- Br bonds dissociation? and which kind of electromagnetic radiation--ultraviolet, visible, or infrared--does the wavelength you calculated correspond to? Group of answer choices A) 435 nm; Blue visible light B) 570 nm; Green/yellow visible light C) 7.2 x 10-31 m; gamma rays D) 435 nm; Red visible lightarrow_forwardThe sun is a giant nuclear reactor, which emits light (electromagnetic radiation) at a range of frequencies. We human can only see visible light (400 – 700 nm), because its absorption results in a conformational change in the retinal molecule, which triggers a neural signal. a. What is the frequency of a 500 nm visible photon? b. How much energy in J does a 500 nm visible photon carry? A typical chemical bond has an energy of 5x10-19 J. Would a visible photon at 500 nm be С. sufficient to break a chemical bond? d. How about a UV (200 nm) photon? Indeed, UV light can damage DNA, the genetic material in our body, leading to mutations and possibly cancer.arrow_forward
- The bond energy for HBr is 363 kJ/mole. What is the longest wavelength (in nm)that can dissociate a molecule of HBr? If a photon of 184 nm is used, what is theexcess energy (in J) over that needed for dissociation? If this excess energy iscarried away by the H atom as kinetic energy, what is its speed (in m/s)?arrow_forward7) Please show the Born-Haber cycle for KCl and write the energy types for each step?arrow_forwardConsider the following data Tor yttrium: 88.906 mol atomic mass electronegativity 1.22 kJ 29.6 mol electron affinity kJ 600. mol ionization energy kJ 11.4 mol heat of fusion You may find additional useful data in the ALEKS Data tab. Does the following reaction absorb or release energy? release absorb (1) Y (g) + e Y (g) Can't be decided with the data given. yes Is it possible to calculate the amount of energy absorbed or released by reaction (1) using only the data above? no If you answered yes to the previous question, enter the amount of energy absorbed or released by reaction (1): kJ/mol Does the following reaction absorb or release energy? release absorb 2+ (2) Y (g) + e - Y (g) Can't be decided with the data given. yes Is it possible to calculate the amount of energy absorbed or released by reaction (2) using only the data above? no If you answered yes to the previous question, enter the amount of energy absorbed or released by reaction (2): |KJ/mol ?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY