Horizons: Exploring the Universe (MindTap Course List)
14th Edition
ISBN: 9781305960961
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7, Problem 2P
To determine
Size of a region represented by the Sun.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Can you answer the question?
Calculate the total amount of radiative energy per second intercepted by Mars from the Sun using the flux of radiation from the Sun at Mars' orbital radius.
Flux of radiation from the Sun at Mars' orbital radius is 597 W m-2.
The luminosity of the Sun Ls = 3.8×1026 W.
Mars orbits at a distance of 2.25×1011 m (1.5 AU) from the Sun.
Note: Consider carefully the cross-sectional area Mars presents to the outwards flow of radiative energy when answering this question.
Gusts of the solar wind travel as fast as 1000 km/s. How many days would the solar wind take to reach Earth at this speed? (Note: The average distance to the Sun is 1.496 ✕ 108 km.)
Chapter 7 Solutions
Horizons: Exploring the Universe (MindTap Course List)
Ch. 7 - Prob. 1RQCh. 7 - What evidence can you give that granulation is...Ch. 7 - Prob. 3RQCh. 7 - Prob. 4RQCh. 7 - Prob. 5RQCh. 7 - Prob. 6RQCh. 7 - Prob. 7RQCh. 7 - Prob. 8RQCh. 7 - Prob. 9RQCh. 7 - Prob. 10RQ
Ch. 7 - Prob. 11RQCh. 7 - How can solar flares affect Earth?Ch. 7 - Prob. 13RQCh. 7 - Prob. 14RQCh. 7 - Prob. 15RQCh. 7 - Prob. 16RQCh. 7 - Prob. 17RQCh. 7 - Prob. 18RQCh. 7 - Explain why the presence of spectral lines of a...Ch. 7 - What energy sources on Earth cannot be thought of...Ch. 7 - What would the spectrum of an auroral display look...Ch. 7 - Prob. 4DQCh. 7 - The radius of the Sun is 0.7 million km. Examine...Ch. 7 - Prob. 2PCh. 7 - Prob. 3PCh. 7 - If a sunspot has a temperature of 4200 K and the...Ch. 7 - How much energy is produced when the Sun converts...Ch. 7 - Prob. 6PCh. 7 - Prob. 7PCh. 7 - Prob. 8PCh. 7 - The United States consumes about 2.51019 J of...Ch. 7 - Prob. 10PCh. 7 - Prob. 1LTLCh. 7 - Prob. 2LTLCh. 7 - Prob. 3LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If each square cm of the sun's surface radiates energy at the rate of 1.5x 103 cal/s/cm? and Stefan's constant is 5.7 x 108 J-s/m? K-4, calculate the temperature of the sun's surface in degree centigrade.arrow_forwardcalculate their size relative to the sun: Please please solve accurate three sub-parts and give comprehensive explanation please it's importantarrow_forwardWhich of the following layers of the Sun can be seen with some type of telescope? Consider all forms of light, but do not consider neutrinos or other particles. (Give ALL correct answers in alphabetical order, i.e., B, AC, BCD...)A) Corona.B) Photosphere.C) Radiation Zone.D) Chromosphere.E) Convection Zone.F) Core.arrow_forward
- Tutorial Star A has a temperature of 6,000 K. How much energy per second (in J/s/m²) does it radiate onto a square meter of its surface? If the temperature of Star A decreases by a factor of 2, the energy will decrease by a factor of Star B has a temperature that is 5 times higher than Star A. How much more energy per second (compared to Star A) does it radiate onto a square meter of its surface? Part 1 of 4 The energy of a star is related to its temperature by E = OTA where o = 5.67 x 10-8 J/s/m²/K4. Part 2 of 4 To determine how much energy Star A is radiating, we just plug in the temperature to solve for EA. EA J/s/m²arrow_forwardDo the previous problem again, this time using the information that the Sun is 150,000,000 km away. You will get a very large number of km as your answer. To get a better feeling for how the distances compare, try calculating the time it takes light at a speed of 299,338 km/s to travel from the Sun to Earth and from Alpha Centauri to Earth. For Alpha Centauri, figure out how long the trip will take in years as well as in seconds.arrow_forwardTutorial Star A has a temperature of 5,000 K. How much energy per second (in J/s/m2) does it radiate from a square meter of its surface? If the temperature of Star A decreases by a factor of 2, the energy will decrease by a factor of Star B has a temperature that is 5 times higher than Star A. How much more energy per second (compared to Star A) does it radiate from a square meter of its surface? Part 1 of 4 The energy of a star is related to its temperature by E = GT4 where σ = 5.67 x 10-8 J/s/m2/K4. Part 2 of 4 To determine how much energy Star A is radiating, we just plug in the temperature to solve for EA. EA = J/s/m² Submit Skip (you cannot come back)arrow_forward
- Assume that Hydrogen comprises 79% of the Sun's mass. How much mass is this? 1.57e+30 kg Only about 11% of the initial Hydrogen in the Sun is in the core where it is hot enough to burn. What was the total mass of the inital H in the core of the Sun? Hint: Use the answer above and the percent in the core to determine the total mass. Using the results from above, how much total energy is available to the Sun via nuclear fusion over its lifetime? (HINT: only 0.71% of the total mass of the available H in the core is converted into energy) Hint: E = m c^2arrow_forwardA star has a surface temperature of T = 10,000 K and a radius three times that of the Sun, R = 3R (recall that symbolizes the Sun). What is its luminosity, L, in units of solar luminosities, L? Give your answer to three significant figures. answer, expressed in solar luminosities, tells how many times more luminous this star is than the Sun.arrow_forwardWhat are the main similarities and differences between solar physics and stellar physics? What are the advantages and disadvantages of having a star so near us? SOarrow_forward
- The figure shows a very simplified version of the structure of the Sun. For each statement below select, in order, the symbol in the picture.arrow_forwardgiven: the mass of Sagittarius A* in units of solar masses = 3,832,087.773 MSun. Question: This object is known to be relatively small in size, with a diameter of about 60 million kilometers. For comparison, Earth is 149.6 million kilometers away from the Sun. Based on this fact, what do you think this object is? Hint: The object itself emits virtually no light at all.arrow_forwardWhy is nearly all of the Sun's energy produced in the inner 1.5% of its volume?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning