EP CALCULUS:EARLY TRANS.-MYLABMATH ACC.
3rd Edition
ISBN: 9780135873311
Author: Briggs
Publisher: PEARSON CO
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 23RE
Moore’s Law In 1965, Gordon Moore observed that the number of transistors that could be placed on an
- a. In 1979, Intel introduced the Intel 8088 processor; each of its integrated circuits contained 29,000 transistors. Use Moore’s revised doubling time to find a function y(t) that approximates the number of transistors on an integrated circuit t years after 1979.
- b. In 2000, the Pentium 4 integrated circuit was introduced, it contained 42 million transistors. Compare this value to the value obtained using the function found in part (a).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A function is defined on the interval (-π/2,π/2) by this multipart rule:
if -π/2 < x < 0
f(x) =
a
if x=0
31-tan x
+31-cot x
if 0 < x < π/2
Here, a and b are constants. Find a and b so that the function f(x) is continuous at x=0.
a=
b= 3
Use the definition of continuity and the properties of limits to show that the function is continuous at the given number a.
f(x) = (x + 4x4) 5,
a = -1
lim f(x)
X--1
=
lim
x+4x
X--1
lim
X-1
4
x+4x
5
))"
5
))
by the power law
by the sum law
lim (x) + lim
X--1
4
4x
X-1
-(0,00+(
Find f(-1).
f(-1)=243
lim (x) +
-1 +4
35
4 ([
)
lim (x4)
5
x-1
Thus, by the definition of continuity, f is continuous at a = -1.
by the multiple constant law
by the direct substitution property
1. Compute
Lo
F⚫dr, where
and C is defined by
F(x, y) = (x² + y)i + (y − x)j
r(t) = (12t)i + (1 − 4t + 4t²)j
from the point (1, 1) to the origin.
Chapter 7 Solutions
EP CALCULUS:EARLY TRANS.-MYLABMATH ACC.
Ch. 7.1 - What is the domain of ln |x|?Ch. 7.1 - Simplify e ln 2x, ln (e2x), e2 ln x, and ln (2ex)Ch. 7.1 - What is the slope of the curve y = ex at x= ln 2?...Ch. 7.1 - Verify that the derivative and integral results...Ch. 7.1 - Prob. 1ECh. 7.1 - Prob. 2ECh. 7.1 - Evaluate 4xdx.Ch. 7.1 - What is the inverse function of ln x, and what are...Ch. 7.1 - Express 3x, x, and xsin x using the base e.Ch. 7.1 - Evaluate ddx(3x).
Ch. 7.1 - Derivatives Evaluate the following derivatives...Ch. 7.1 - Derivatives with ln x Evaluate the following...Ch. 7.1 - Derivatives with ln x Evaluate the following...Ch. 7.1 - Derivatives with ln x Evaluate the following...Ch. 7.1 - Derivatives with ln x Evaluate the following...Ch. 7.1 - Derivatives with ln x Evaluate the following...Ch. 7.1 - Derivatives Evaluate the derivatives of the...Ch. 7.1 - Derivatives Evaluate the derivatives of the...Ch. 7.1 - Derivatives Evaluate the derivatives of the...Ch. 7.1 - Derivatives Evaluate the derivatives of the...Ch. 7.1 - Derivatives Evaluate the derivatives of the...Ch. 7.1 - Derivatives Evaluate the derivatives of the...Ch. 7.1 - Derivatives Evaluate the derivatives of the...Ch. 7.1 - Derivatives Evaluate the derivatives of the...Ch. 7.1 - Miscellaneous derivatives Compute the following...Ch. 7.1 - Miscellaneous derivatives Compute the following...Ch. 7.1 - Miscellaneous derivatives Compute the following...Ch. 7.1 - Prob. 24ECh. 7.1 - Miscellaneous derivatives Compute the following...Ch. 7.1 - Miscellaneous derivatives Compute the following...Ch. 7.1 - Miscellaneous derivatives Compute the following...Ch. 7.1 - Miscellaneous derivatives Compute the following...Ch. 7.1 - Integrals with ln x Evaluate the following...Ch. 7.1 - Integrals Evaluate the following integrals....Ch. 7.1 - Integrals with ln x Evaluate the following...Ch. 7.1 - Integrals with ln x Evaluate the following...Ch. 7.1 - Integrals with ln x Evaluate the following...Ch. 7.1 - Integrals with ln x Evaluate the following...Ch. 7.1 - Integrals with ln x Evaluate the following...Ch. 7.1 - Integrals with ln x Evaluate the following...Ch. 7.1 - Integrals with ex Evaluate the following...Ch. 7.1 - Integrals with ex Evaluate the following...Ch. 7.1 - Integrals with ex Evaluate the following...Ch. 7.1 - Integrals with ex Evaluate the following...Ch. 7.1 - Integrals with ex Evaluate the following...Ch. 7.1 - Integrals with ex Evaluate the following...Ch. 7.1 - Integrals with general bases Evaluate the...Ch. 7.1 - Integrals with general bases Evaluate the...Ch. 7.1 - Integrals with general bases Evaluate the...Ch. 7.1 - Integrals with general bases Evaluate the...Ch. 7.1 - Integrals with general bases Evaluate the...Ch. 7.1 - Integrals with general bases Evaluate the...Ch. 7.1 - Integrals Evaluate the following integrals....Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Integrals Evaluate the following integrals....Ch. 7.1 - Integrals Evaluate the following integrals....Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Calculator limits Use a calculator to make a table...Ch. 7.1 - Calculator limits Use a calculator to make a table...Ch. 7.1 - Calculator limits Use a calculator to make a table...Ch. 7.1 - Calculator limits Use a calculator to make a table...Ch. 7.1 - Prob. 67ECh. 7.1 - Prob. 68ECh. 7.1 - Prob. 69ECh. 7.1 - Prob. 70ECh. 7.1 - Prob. 71ECh. 7.1 - Prob. 72ECh. 7.1 - Prob. 73ECh. 7.1 - Prob. 74ECh. 7.1 - Prob. 75ECh. 7.1 - Prob. 76ECh. 7.1 - Harmonic sum In Chapter 10, we will encounter the...Ch. 7.1 - Probability as an integral Two points P and Q are...Ch. 7.2 - Population A increases at a constant rate of...Ch. 7.2 - Verify that the time needed for y(t) = y0ekt. to...Ch. 7.2 - Assume y() 100e0.005, 3y (exactly) what...Ch. 7.2 - If a quantity decreases by a factor of 8 every 30...Ch. 7.2 - In terms of relative growth rate, what is the...Ch. 7.2 - Prob. 2ECh. 7.2 - Prob. 3ECh. 7.2 - Prob. 4ECh. 7.2 - Prob. 5ECh. 7.2 - Prob. 6ECh. 7.2 - Suppose a quantity described by the function y(t)...Ch. 7.2 - Suppose a quantity is described by the function...Ch. 7.2 - Give two examples of processes that are modeled by...Ch. 7.2 - Give two examples of processes that are modeled by...Ch. 7.2 - Because of the absence of predators, the number of...Ch. 7.2 - After the introduction of foxes on an island, the...Ch. 7.2 - Absolute and relative growth rates Two functions f...Ch. 7.2 - Absolute and relative growth rates Two functions f...Ch. 7.2 - Designing exponential growth functions Complete...Ch. 7.2 - Designing exponential growth functions Complete...Ch. 7.2 - Designing exponential growth functions Complete...Ch. 7.2 - Designing exponential growth functions Complete...Ch. 7.2 - Designing exponential growth functions Complete...Ch. 7.2 - Designing exponential growth functions Complete...Ch. 7.2 - Determining APY Suppose 1000 is deposited in a...Ch. 7.2 - Tortoise growth In a study conducted at University...Ch. 7.2 - Projection sensitivity According to the 2014...Ch. 7.2 - Energy consumption On the first day of the year (t...Ch. 7.2 - Population of Texas Texas was the third fastest...Ch. 7.2 - Oil consumption Starting in 2018 (t = 0), the rate...Ch. 7.2 - Designing exponential decay functions Devise an...Ch. 7.2 - Designing exponential decay functions Devise an...Ch. 7.2 - Designing exponential decay functions Devise an...Ch. 7.2 - Designing exponential decay functions Devise an...Ch. 7.2 - Population of West Virginia The population of West...Ch. 7.2 - Prob. 32ECh. 7.2 - Atmospheric pressure The pressure of Earths...Ch. 7.2 - Carbon dating The half-life of C-14 is about 5730...Ch. 7.2 - Uranium dating Uranium-238 (U-238) has a half-life...Ch. 7.2 - Radioiodine treatment Roughly 12,000 Americans are...Ch. 7.2 - Caffeine After an individual drinks a beverage...Ch. 7.2 - Caffeine After an individual drinks a beverage...Ch. 7.2 - Prob. 39ECh. 7.2 - Prob. 40ECh. 7.2 - Tumor growth Suppose the cells of a tumor are...Ch. 7.2 - Tripling time A quantity increases according to...Ch. 7.2 - Explain why or why not Determine whether the...Ch. 7.2 - A running model A model for the startup of a...Ch. 7.2 - Prob. 45ECh. 7.2 - Prob. 46ECh. 7.2 - A slowing race Starting at the same time and...Ch. 7.2 - Prob. 48ECh. 7.2 - Compounded inflation The U.S. government reports...Ch. 7.2 - Acceleration, velocity, position Suppose the...Ch. 7.2 - Air resistance (adapted from Putnam Exam, 1939) An...Ch. 7.2 - General relative growth rates Define the relative...Ch. 7.2 - Equivalent growth functions The same exponential...Ch. 7.2 - Geometric means A quantity grows exponentially...Ch. 7.2 - Constant doubling time Prove that the doubling...Ch. 7.3 - Use the definition of the hyperbolic sine to show...Ch. 7.3 - Explain why the graph of tanh x has the horizontal...Ch. 7.3 - Find both the derivative and indefinite integral...Ch. 7.3 - Prob. 4QCCh. 7.3 - Prob. 5QCCh. 7.3 - Prob. 6QCCh. 7.3 - Explain why longer waves travel faster than...Ch. 7.3 - State the definition of the hyperbolic cosine and...Ch. 7.3 - Sketch the graphs of y = cosh x, y sinh x, and y...Ch. 7.3 - What is the fundamental identity for hyperbolic...Ch. 7.3 - Prob. 4ECh. 7.3 - Express sinh1 x in terms of logarithms.Ch. 7.3 - Prob. 6ECh. 7.3 - Prob. 7ECh. 7.3 - On what interval is the formula d/dx (tanh1 x) =...Ch. 7.3 - Prob. 9ECh. 7.3 - Prob. 10ECh. 7.3 - Verifying identities Verify each identity using...Ch. 7.3 - Verifying identities Verify each identity using...Ch. 7.3 - Verifying identities Verify each identity using...Ch. 7.3 - Verifying identities Verify each identity using...Ch. 7.3 - Verifying identities Verify each identity using...Ch. 7.3 - Verifying identities Use the given identity to...Ch. 7.3 - Verifying identities Use the given identity to...Ch. 7.3 - Prob. 18ECh. 7.3 - Derivative formulas Derive the following...Ch. 7.3 - Derivative formulas Derive the following...Ch. 7.3 - Derivative formulas Derive the following...Ch. 7.3 - Derivatives Compute dy/dx for the following...Ch. 7.3 - Derivatives Compute dy/dx for the following...Ch. 7.3 - Derivatives Compute dy/dx for the following...Ch. 7.3 - Derivatives Compute dy/dx for the following...Ch. 7.3 - Derivatives Compute dy/dx for the following...Ch. 7.3 - Derivatives Compute dy/dx for the following...Ch. 7.3 - Derivatives Compute dy/dx for the following...Ch. 7.3 - Derivatives Compute dy/dx for the following...Ch. 7.3 - Prob. 30ECh. 7.3 - Derivatives Find the derivatives of the following...Ch. 7.3 - Derivatives Find the derivatives of the following...Ch. 7.3 - Derivatives Find the derivatives of the following...Ch. 7.3 - Derivatives Find the derivatives of the following...Ch. 7.3 - Prob. 35ECh. 7.3 - Prob. 36ECh. 7.3 - Indefinite integrals Determine each indefinite...Ch. 7.3 - Integrals Evaluate each integral. sech2wtanhwdwCh. 7.3 - Indefinite integrals Determine each indefinite...Ch. 7.3 - Indefinite integrals Determine each indefinite...Ch. 7.3 - Indefinite integrals Determine each indefinite...Ch. 7.3 - Indefinite integrals Determine each indefinite...Ch. 7.3 - Definite integrals Evaluate each definite...Ch. 7.3 - Integrals Evaluate each integral. 0ln2sech2xxdxCh. 7.3 - Definite integrals Evaluate each definite...Ch. 7.3 - Definite integrals Evaluate each definite...Ch. 7.3 - Indefinite integrals Determine the following...Ch. 7.3 - Integrals Evaluate each integral. 48.dxx216,x4Ch. 7.3 - Indefinite integrals Determine the following...Ch. 7.3 - Prob. 50ECh. 7.3 - Indefinite integrals Determine the following...Ch. 7.3 - Prob. 52ECh. 7.3 - Additional integrals Evaluate the following...Ch. 7.3 - Additional integrals Evaluate the following...Ch. 7.3 - Prob. 55ECh. 7.3 - Additional integrals Evaluate the following...Ch. 7.3 - Two ways Evaluate the following integrals two...Ch. 7.3 - Two ways Evaluate the following integrals two...Ch. 7.3 - Visual approximation a. Use a graphing utility to...Ch. 7.3 - Prob. 60ECh. 7.3 - Prob. 61ECh. 7.3 - Points of intersection and area a. Sketch the...Ch. 7.3 - Definite integrals Evaluate the following definite...Ch. 7.3 - Definite integrals Evaluate the following definite...Ch. 7.3 - Definite integrals Evaluate the following definite...Ch. 7.3 - Prob. 66ECh. 7.3 - Prob. 67ECh. 7.3 - Prob. 68ECh. 7.3 - Catenary arch The portion of the curve y=1716coshx...Ch. 7.3 - Length of a catenary Show that the arc length of...Ch. 7.3 - Power lines A power line is attached at the same...Ch. 7.3 - Sag angle Imagine a climber clipping onto the rope...Ch. 7.3 - Wavelength The velocity of a surface wave on the...Ch. 7.3 - Prob. 74ECh. 7.3 - Prob. 75ECh. 7.3 - Prob. 76ECh. 7.3 - Explain why or why not Determine whether the...Ch. 7.3 - Evaluating hyperbolic functions Use a calculator...Ch. 7.3 - Evaluating hyperbolic functions Evaluate each...Ch. 7.3 - Prob. 80ECh. 7.3 - Critical points Find the critical points of the...Ch. 7.3 - Critical points a. Show that the critical points...Ch. 7.3 - Points of inflection Find the x-coordinate of the...Ch. 7.3 - Prob. 84ECh. 7.3 - Area of region Find the area of the region bounded...Ch. 7.3 - Prob. 86ECh. 7.3 - LHpital loophole Explain why lHpitals Rule fails...Ch. 7.3 - Limits Use lHpitals Rule to evaluate the following...Ch. 7.3 - Limits Use lHpitals Rule to evaluate the following...Ch. 7.3 - Prob. 90ECh. 7.3 - Prob. 91ECh. 7.3 - Prob. 92ECh. 7.3 - Kiln design Find the volume interior to the...Ch. 7.3 - Prob. 94ECh. 7.3 - Falling body When an object falling from rest...Ch. 7.3 - Prob. 96ECh. 7.3 - Prob. 97ECh. 7.3 - Prob. 98ECh. 7.3 - Differential equations Hyperbolic functions are...Ch. 7.3 - Prob. 100ECh. 7.3 - Prob. 101ECh. 7.3 - Prob. 102ECh. 7.3 - Prob. 103ECh. 7.3 - Prob. 104ECh. 7.3 - Prob. 105ECh. 7.3 - Theorem 7.8 a. The definition of the inverse...Ch. 7.3 - Prob. 107ECh. 7.3 - Prob. 108ECh. 7.3 - Arc length Use the result of Exercise 108 to find...Ch. 7.3 - Prob. 110ECh. 7.3 - Prob. 111ECh. 7.3 - Definitions of hyperbolic sine and cosine Complete...Ch. 7 - Explain why or why not Determine whether the...Ch. 7 - Integrals Evaluate the following integrals. 56....Ch. 7 - Integrals Evaluate the following integrals. 57....Ch. 7 - Integrals Evaluate the following integrals. 58....Ch. 7 - Integrals Evaluate the following integrals. 59....Ch. 7 - Integrals Evaluate the following integrals. 60....Ch. 7 - Integrals Evaluate the following integrals. 61....Ch. 7 - Integrals Evaluate the following integrals. 62....Ch. 7 - Integrals Evaluate the following integrals. 63....Ch. 7 - Derivatives Find the derivatives of the following...Ch. 7 - Derivatives Find the derivatives of the following...Ch. 7 - Derivatives Find the derivatives of the following...Ch. 7 - Derivatives Find the derivatives of the following...Ch. 7 - Prob. 14RECh. 7 - Prob. 15RECh. 7 - Derivatives Find the derivatives of the following...Ch. 7 - Prob. 17RECh. 7 - Prob. 18RECh. 7 - Prob. 19RECh. 7 - Population growth The population of a large city...Ch. 7 - Caffeine An adult consumes an espresso containing...Ch. 7 - Two cups of coffee A college student consumed two...Ch. 7 - Moores Law In 1965, Gordon Moore observed that the...Ch. 7 - Radioactive decay The mass of radioactive material...Ch. 7 - Population growth Growing from an initial...Ch. 7 - Prob. 26RECh. 7 - Prob. 27RECh. 7 - Curve sketching Use the graphing techniques of...Ch. 7 - Prob. 29RECh. 7 - Prob. 30RECh. 7 - Linear approximation Find the linear approximation...Ch. 7 - Limit Evaluate limx(tanhx)x.Ch. 7 - Derivatives of hyperbolic functions Compute the...Ch. 7 - Arc length Find the arc length of the curve y = ln...
Additional Math Textbook Solutions
Find more solutions based on key concepts
Sum of the given expression
Pre-Algebra Student Edition
Derivatives involving ln x Find the following derivatives. 15. ddx(ln(x+1x1))
Calculus: Early Transcendentals (2nd Edition)
Find the first and second derivatives of the functions in Exercises 4552.
45. y =
University Calculus: Early Transcendentals (4th Edition)
4. Correlation and Causation What is meant by the statement that “correlation does imply causation”?
Elementary Statistics
Simulating Guessing on a Multiple-Choice Test Suppose a student takes a 10-question multiple-choice quiz, and f...
Introductory Statistics
If n is a counting number, bn, read______, indicates that there are n factors of b. The number b is called the_...
Algebra and Trigonometry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- 2. Consider the vector force: F(x, y, z) = 2xye²i + (x²e² + y)j + (x²ye² — z)k. (A) [80%] Show that F satisfies the conditions for a conservative vector field, and find a potential function (x, y, z) for F. Remark: To find o, you must use the method explained in the lecture. (B) [20%] Use the Fundamental Theorem for Line Integrals to compute the work done by F on an object moves along any path from (0,1,2) to (2, 1, -8).arrow_forwardhelp pleasearrow_forwardIn each of Problems 1 through 4, draw a direction field for the given differential equation. Based on the direction field, determine the behavior of y as t → ∞. If this behavior depends on the initial value of y at t = 0, describe the dependency.1. y′ = 3 − 2yarrow_forward
- B 2- The figure gives four points and some corresponding rays in the xy-plane. Which of the following is true? A B Angle COB is in standard position with initial ray OB and terminal ray OC. Angle COB is in standard position with initial ray OC and terminal ray OB. C Angle DOB is in standard position with initial ray OB and terminal ray OD. D Angle DOB is in standard position with initial ray OD and terminal ray OB.arrow_forwardtemperature in degrees Fahrenheit, n hours since midnight. 5. The temperature was recorded at several times during the day. Function T gives the Here is a graph for this function. To 29uis a. Describe the overall trend of temperature throughout the day. temperature (Fahrenheit) 40 50 50 60 60 70 5 10 15 20 25 time of day b. Based on the graph, did the temperature change more quickly between 10:00 a.m. and noon, or between 8:00 p.m. and 10:00 p.m.? Explain how you know. (From Unit 4, Lesson 7.) 6. Explain why this graph does not represent a function. (From Unit 4, Lesson 8.)arrow_forwardFind the area of the shaded region. (a) 5- y 3 2- (1,4) (5,0) 1 3 4 5 6 (b) 3 y 2 Decide whether the problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution. STEP 1: Consider the figure in part (a). Since this region is simply a triangle, you may use precalculus methods to solve this part of the problem. First determine the height of the triangle and the length of the triangle's base. height 4 units units base 5 STEP 2: Compute the area of the triangle by employing a formula from precalculus, thus finding the area of the shaded region in part (a). 10 square units STEP 3: Consider the figure in part (b). Since this region is defined by a complicated curve, the problem seems to require calculus. Find an approximation of the shaded region by using a graphical approach. (Hint: Treat the shaded regi as…arrow_forward
- Solve this differential equation: dy 0.05y(900 - y) dt y(0) = 2 y(t) =arrow_forwardSuppose that you are holding your toy submarine under the water. You release it and it begins to ascend. The graph models the depth of the submarine as a function of time. What is the domain and range of the function in the graph? 1- t (time) 1 2 4/5 6 7 8 -2 -3 456700 -4 -5 -6 -7 d (depth) -8 D: 00 t≤ R:arrow_forward0 5 -1 2 1 N = 1 to x = 3 Based on the graph above, estimate to one decimal place the average rate of change from x =arrow_forwardComplete the description of the piecewise function graphed below. Use interval notation to indicate the intervals. -7 -6 -5 -4 30 6 5 4 3 0 2 1 -1 5 6 + -2 -3 -5 456 -6 - { 1 if x Є f(x) = { 1 if x Є { 3 if x Єarrow_forwardComplete the description of the piecewise function graphed below. 6 5 -7-6-5-4-3-2-1 2 3 5 6 -1 -2 -3 -4 -5 { f(x) = { { -6 if -6x-2 if -2< x <1 if 1 < x <6arrow_forwardLet F = V where (x, y, z) x2 1 + sin² 2 +z2 and let A be the line integral of F along the curve x = tcost, y = t sint, z=t, starting on the plane z = 6.14 and ending on the plane z = 4.30. Then sin(3A) is -0.598 -0.649 0.767 0.278 0.502 0.010 -0.548 0.960arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Use of ALGEBRA in REAL LIFE; Author: Fast and Easy Maths !;https://www.youtube.com/watch?v=9_PbWFpvkDc;License: Standard YouTube License, CC-BY
Compound Interest Formula Explained, Investment, Monthly & Continuously, Word Problems, Algebra; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=P182Abv3fOk;License: Standard YouTube License, CC-BY
Applications of Algebra (Digit, Age, Work, Clock, Mixture and Rate Problems); Author: EngineerProf PH;https://www.youtube.com/watch?v=Y8aJ_wYCS2g;License: Standard YouTube License, CC-BY