
Fundamentals of Applied Electromagnetics (7th Edition)
7th Edition
ISBN: 9780133356984
Author: ULABY
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 13P
A linearly polarized plane wave of the form
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
EXAMPLE 4.4
In a binary symmetric communication (BSC) channel, the input bits transmitted over the channel
are either 0 or 1 with probabilities p and 1-p, respectively. Due to channel noise, errors are made.
As shown in Figure 4.4, the channel is assumed to be symmetric, which means the probability of
receiving 1 when 0 is transmitted is the same as the probability of receiving 0 when 1 is transmit-
ted. The conditional probabilities of error are assumed to be each e. Determine the average prob-
ability of error, also known as the bit error rate, as well as the a posteriori probabilities.
What is the bandwidth requirement in Hz for baseband binary transmission at 64 kbps, if the roll-off factor is 0.25?
EXAMPLE 6.4
Suppose the roll-off factor is 25% and the bandwidth of a baseband transmission system satisfying
the Nyquist criterion is 30 kHz. Determine the bit rate.
Solution
1+α
1
Chapter 7 Solutions
Fundamentals of Applied Electromagnetics (7th Edition)
Ch. 7.2 - What is a uniform plane wave? Describe its...Ch. 7.2 - Since E and H are governed by wave equations of...Ch. 7.2 - If a TEM wave is traveling in the y direction, can...Ch. 7.2 - Prob. 1ECh. 7.2 - Prob. 2ECh. 7.2 - If the magnetic field phasor of a plane wave...Ch. 7.2 - Repeat Exercise 7-3 for a magnetic field given by...Ch. 7.3 - An elliptically polarized wave is characterized by...Ch. 7.3 - Prob. 5CQCh. 7.3 - The electric field of a plane wave is given by...
Ch. 7.4 - If the electric field phasor of a TEM wave is...Ch. 7.4 - The constitutive parameters of copper are = 0 = 4...Ch. 7.4 - Prob. 8ECh. 7.4 - For a wave traveling in a medium with a skin depth...Ch. 7.5 - Prob. 6CQCh. 7.5 - In a good conductor, does the phase of H lead or...Ch. 7.5 - Prob. 8CQCh. 7.5 - Is a conducting medium dispersive or...Ch. 7.5 - Compare the flow of current through a wire in the...Ch. 7.6 - Convert the following values of the power ratio G...Ch. 7.6 - Find the voltage ratio g corresponding to the...Ch. 7 - The magnetic field of a wave propagating through a...Ch. 7 - Prob. 2PCh. 7 - The electric field phasor of a uniform plane wave...Ch. 7 - The electric field of a plane wave propagating in...Ch. 7 - A wave radiated by a source in air is incident...Ch. 7 - The electric field of a planewave propagating in a...Ch. 7 - The magnetic field of a plane wave propagating in...Ch. 7 - A 60 MHz plane wave traveling in the x direction...Ch. 7 - Prob. 9PCh. 7 - For a wave characterized by the electric field...Ch. 7 - Prob. 11PCh. 7 - The magnetic field of a uniform plane wave...Ch. 7 - A linearly polarized plane wave of the form...Ch. 7 - The electric field of an elliptically polarized...Ch. 7 - Compare the polarization states of each of the...Ch. 7 - Plot the locus of E(0, t) for a plane wave with...Ch. 7 - Prob. 17PCh. 7 - Prob. 18PCh. 7 - In a medium characterized by r = 9, r = 1, and =...Ch. 7 - Prob. 20PCh. 7 - Prob. 21PCh. 7 - Prob. 22PCh. 7 - The skin depth of a certain nonmagnetic conducting...Ch. 7 - Prob. 24PCh. 7 - The electric field of a plane wave propagating in...Ch. 7 - The magnetic field of a plane wave propagating in...Ch. 7 - At 2 GHz, the conductivity of meat is on the order...Ch. 7 - In a nonmagnetic, lossy, dielectric medium, a 300...Ch. 7 - A rectangular copper block is 30 cm in height...Ch. 7 - Prob. 30PCh. 7 - The inner and outer conductors of a coaxial cable...Ch. 7 - Prob. 32PCh. 7 - The magnetic field of a plane wave traveling in...Ch. 7 - A wave traveling in a nonmagnetic medium with r =...Ch. 7 - The electric-field phasor of a uniform plane wave...Ch. 7 - Prob. 36PCh. 7 - A wave traveling in a lossless, nonmagnetic medium...Ch. 7 - At microwave frequencies, the power density...Ch. 7 - Consider the imaginary rectangular box shown in...Ch. 7 - Repeat Problem 7.39 for a wave traveling in a...Ch. 7 - Given a wave with E=x E0 cos(t kz): (a) Calculate...Ch. 7 - Prob. 42P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- EXAMPLE 4.9 In a communication system, the noise level is modeled as a Gaussian random variable with m=0 and ² = 0.0001. Determine P(X > 0.01) and P(-0.04 ≤x≤ 0.05). 3arrow_forwardSuppose the random variable X is uniformly distributed between 0 and 1 with probability 0.25, takes on the value of 1 with probability p, and is uniformly distributed between 1 and 2 with probability 0.5. Determine p as well as the pdf and cdf of the random variable Xarrow_forwardconstants: A (medium) single phase transmission line 100 km long has the following Resistance/km = 0.25 2; Susceptance/km = 14 × 10 siemen; Reactance/km = 0.8 Receiving end line voltage = 66,000 V Assuming that the total capacitance of the line is localised at the receiving end alone, determine (i) the sending end current (ii) the sending end voltage (iii) regulation and (iv) supply power factor. The line is delivering 15,000 kW at 0.8 power factor lagging. Draw the phasor diagram to illustrate your calculations.arrow_forward
- For the power system given below, the voltage at bus 2 is kept at 1.03 pu. The maximum power can be delivered by G2 is 35 MW. Obtain the load flow solution. Take the base power 100 MVA. V₁ = 1.0520 G₁ 0.02+j0.06 G2 V2=1.03 P2 = 35 MW 0.08+j0.24 SL2 20+j50 MVA SL3 60+j25 MVA 0.06+j0.018arrow_forwardGeneral Directions: Read the questions carefully and answer (3*10=30marks) 1. Design a summing amplifier by choosing appropriate values of resistors an so that the output is 5 times the sum of the input voltages. (you are free to use any number of inputs, the type of op-amp, any value of resistors) 2. Derive the equation for the closed loop gain of the inverting and non-inverting Amplifier using appropriate circuit diagrams. 3. Determine the values read by the measuring devices using appropriate formulae www Voc +8V R₁ 33 k Rc 2.2 k ww WWW Poc 200 R₁₂ RE 10 kn 1.0 knarrow_forward十 : + B 日 العنوان I need a detailed drawing with explanation ややハメPV+96252 4 Project Homework: Create a simulation for a tank when the flowrate inside and outside the tank must range between 0 and 10 lit/s: 1) The level should be controlled within a range between more than zero to 1000 lit. 2) An alarm must be launched when the level is out of range (less than 100 and more than 900 lit). 3) When the capacity reaches to the maximum the motor turns OFF. area=A Qout -20 solve in lab view X9.01 *175*1arrow_forward
- Project Homework: Create a simulation for a tank when the flowrate inside and outside the tank must range between 0 and 10 lit/s: 1) The level should be controlled within a range between more than zero to 1000 lit. 2) An alarm must be launched when the level is out of range (less than 100 and more than 900 lit). 3) When the capacity reaches to the maximum the motor turns OFF. Qin h C Qout area=A solve in lab viewarrow_forwardQUESTION [3] A no-load and short-circuit test should be conducted on a 220V/110V, 280VA transformer. a. Draw the circuit diagram for the no-load test and include all measurements that should be made. Also write down the maximum voltage that you should apply to the primary winding and estimate the current drawn from the supply. (5) b. Draw a circuit diagram for the short-circuit test and include all measurements that should be made. Also write down the maximum current that should be allowed to flow in the primary winding and estimated the primary voltage that will cause this value of the current to flow. (5)arrow_forwardOnly expert should solve it pleasearrow_forward
- Need handwritten solution pleasearrow_forwardDesign a lowpass FIR filter using frequency sampling technique having cut-off frequency of T/2 rad/sample. The filter should have linear phase and length of 17.arrow_forwardA dc compound motor having a rating of 10 kW, 1150 r/min, 230 V, 50 A, has the following losses at full-load: bearing friction loss 40 W brush friction loss == 50 W windage loss = 200 W (1) total mechanical losses = 290 W (2) iron losses = 420 W (3) copper loss in the shunt field = 120 W copper losses at full-load: (4) a. in the armature b. in the series field c. in the commutating winding total copper loss in the 500 W 25 W 70 W armature circuit at full-load = 595 Warrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education

Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education

Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON

Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
What Is a Plane Wave? — Lesson 2; Author: EMViso;https://www.youtube.com/watch?v=ES2WFevGM0g;License: Standard Youtube License