
Concept explainers
The magnetic field of a wave propagating through a certain nonmagnetic material is given by
Find the following:
- (a) The direction of wave propagation.
- (b) The phase velocity.
- (c) The wavelength in the material.
- (d) The relative permittivity of the material.
- (e) The electric field phasor.
(a)

The direction of wave propagation for the given condition.
Answer to Problem 1P
The direction of wave propagation for the given condition is
Explanation of Solution
Given data:
The magnetic field intensity of the wave is
Calculation:
Write the standard expression for the magnetic field phasor of TEM wave propagating in the
Here,
In the above equation positive sign is used when the wave is travelling in the
In the given magnetic field negative sign is used so the direction of wave propagation is along the
Conclusion:
Therefore, the direction of wave propagation for the given condition is
(b)

The phase velocity for the given condition.
Answer to Problem 1P
The phase velocity for the given condition is
Explanation of Solution
Calculation:
Write the standard relation of phase velocity, wave number and angular frequency of uniform plane wave.
Here,
Compare the given magnetic field and equation (1) to calculate the value of
Substitute
Conclusion:
Therefore, the phase velocity for the given condition is
(c)

The wavelength in the material.
Answer to Problem 1P
The wavelength in the material is
Explanation of Solution
Calculation:
Write the standard relation between wavelength and wave number of plane wave.
Here,
Substitute
Conclusion:
Therefore, the wavelength in the material is
(d)

The relative permittivity of the medium.
Answer to Problem 1P
The relative permittivity
Explanation of Solution
Calculation:
Write the standard relation between relative permittivity and speed of light and phase velocity.
Here,
Substitute
Conclusion:
Therefore, the relative permittivity
(e)

The electric field phasor.
Answer to Problem 1P
The electric field phasor is
Explanation of Solution
Calculation:
Write the standard relation between electric field and magnetic field intensity.
Here,
Write the standard expression for the intrinsic impedance of the medium.
Here,
Write the standard expression for the electrical permittivity of any medium as,
Here,
Substitute
The permeability of the given non magnetic medium is,
Substitute
Substitute
Simplify the above expression.
The conversion from
So, the conversion from
Substitute
Conclusion:
Therefore, the electric field phasor is
Want to see more full solutions like this?
Chapter 7 Solutions
Fundamentals of Applied Electromagnetics (7th Edition)
- A dc motor connected to a 240 V line pro- duces a mechanical output of 160 hp. Knowing that the losses are 12 kW, calculate the input power and the line current.arrow_forwardA 115 V dc generator delivers 120 A to a load. If the generator has an efficiency of 81 percent, calculate the mechanical power needed to drive it [hp].arrow_forwardA machine having class B insulation attains a temperature of 208°C (by resistance) in a torrid ambient temperature of 180°C. a. What is the temperature rise? b. Is the machine running too hot and, if so, by how much?arrow_forward
- 1 Name the losses in a dc motor. 2 What causes iron losses and how can they be reduced? -3 Explain why the temperature of a machine increases as the load increases.arrow_forward20. A tractor weighing 14 kN with a wheel base of 3m carries an 8 kN load on its rear wheel. Compute the maximum bending moment and shear when crossing a 4.5 span. Consider the load only at the wheels.arrow_forwardA 110-V, three-phase, Y-connected, 8 pole, 48-slot, 6000-rpm, double-layer wound chronoun anı vonorotor boo 10 +1 urn or oilarrow_forward
- -7 Name some of the factors that contribute to the deterioration of organic insulators. -8 A motor is built with class H insulation. What maximum hot-spot temperature can it withstand?arrow_forwardCalculate the full-load current of a 250 hp, 230 V dc motor having an efficiency of 92 percent.arrow_forwardAssignment #2 A 110-V, three-phase, Y-connected, 8 pole, 48-slot, 6000-rpm, double-layer wound, synchronous generator has 12 turns per coil. If one side of the coil is in slot 1, the other side is in slot 6. There are 4 parallel paths. When the generator delivers the rated load at a line voltage of 110 V, the voltage regulation is 5%. What is the flux per pole? Draw two consecutive phasegroups of one of the phase windings and connect them (a) in series and (b) in parallel showing the Start (S) and Finish (F) of both connections. (A separate drawing for each connection)arrow_forward
- 3-4 Transmissiva Live of 120km has R= 0.2 ~2/15 X= 0.8 -2/km Y = 15H/6 5/km The line is supplies a load of 45 kV, SOMW, 0.8 lead p.f find sending voltage, Sending Current p.f. Sanding Voltage Regulation ⑨Voltage 5 Ⓒ charching coming! изу usy π cct लेarrow_forwardA (medium) single phase transmission line 100 km long has the following constants : Resistance/km = 0.25 Q; Susceptance/km = 14 × 10° siemen ; Reactance/km = 0.8 Receiving end line voltage = 66,000 V Assuming that the total capacitance of the line is localised at the receiving end alone, determine (i) the sending end current (ii) the sending end voltage (iii) regulation and (iv) supply power factor. The line is delivering 15,000 kW at 0.8 power factor Lead Draw the phasor diagram to illustrate your calculations.arrow_forward1. An electromagnetic device is shown below. The coil in the left side is connected to a steady AC power source. The left coil generates a changing magnetic flux, which is = 1.5cos(120πt +л/6) T. Calculate the voltage vs generated across the right coil given the number of turns of the right coil is 5 (You only need to calculate the magnitude). Vparrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,





