![Conceptual Physics (12th Edition)](https://www.bartleby.com/isbn_cover_images/9780321909107/9780321909107_largeCoverImage.gif)
Conceptual Physics (12th Edition)
12th Edition
ISBN: 9780321909107
Author: Paul G. Hewitt
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 119RCQ
Consider a satellite in a circular orbit above Earth s surface. In Chapter 10 we will learn that the force of gravity changes only the direction of motion of a satellite in circular motion (and keeps it in a circle); it does NOT change the satellite’s speed. Work done on the satellite by the gravitational force is zero. What is your explanation?
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Trending nowThis is a popular solution!
![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
SARET CRKS AUTOWAY
12. A stone is dropped from the top of a cliff. It is seen to hit the ground below
after 3.55 s. How high is the cliff?
13. A ball is dropped from rest at the top of a building that is 320 m tall. Assuming
no air resistance, what is the speed of the ball just before it strikes the ground?
14. Estimate (a) how long it took King Kong to fall straight down from the top
of the Empire State Building (280m high), and (b) his velocity just before
"landing".
Useful equations
For Constant Velocity:
V =>
D
X = V₁t + Xo
For Constant Acceleration:
Vr = V + at
X = Xo+Vot +
v=V+2a(X-Xo)
\prom = V +V
V velocity
t = time
D Distance
X = Final Position
Xo Initial Position
V = Final Velocity
Vo Initial Velocity
a = acceleration
For free fall
Yf
= Final Position
Yo Initial Position
g = 9.80
m
$2
For free fall:
V = V + gt
Y=Yo+Vo t +
+gt
V,² = V₁²+2g (Y-Yo)
V+Vo
Vprom=
2
6
Solve the problems
A 11 kg weight is attached to a spring with constant k = 99 N/m and subjected to an external force
F(t) =-704 sin(5t). The weight is initially displaced 4 meters above equilibrium and given an
upward velocity of 5 m/s. Find its displacement for t> 0.
y(t)
ון
Chapter 7 Solutions
Conceptual Physics (12th Edition)
Ch. 7 - When is energy most evident?Ch. 7 - A force sets an object in motion. When the force...Ch. 7 - Cite an example in which a force is exerted on an...Ch. 7 - Prob. 4RCQCh. 7 - Exactly what is it that enables an object to do...Ch. 7 - If both sacks in the preceding question are lifted...Ch. 7 - A car is raised a certain distance in a...Ch. 7 - Two cars are raised to the same elevation on...Ch. 7 - When is the potential energy of something...Ch. 7 - Prob. 10RCQ
Ch. 7 - 11. Compared with a car moving at some original...Ch. 7 - If you push a crate horizontally with 100 N across...Ch. 7 - 13. How does speed affect the friction between a...Ch. 7 - 14. What will be the kinetic energy of a pile...Ch. 7 - An apple hanging from a limb has potential energy...Ch. 7 - 16. What is the source of energy in sunshine?
Ch. 7 - Prob. 17RCQCh. 7 - 18. Can a machine multiply input force? Input...Ch. 7 - 19. If a machine multiplies force by a factor of...Ch. 7 - 20. A force of 50 N is applied to the end of a...Ch. 7 - 21. What is the efficiency of a machine that...Ch. 7 - Prob. 22RCQCh. 7 - Prob. 23RCQCh. 7 - Prob. 24RCQCh. 7 - 25. Can we correctly say that hydrogen is a new...Ch. 7 - Prob. 26RCQCh. 7 - Prob. 27RCQCh. 7 - Prob. 28RCQCh. 7 - Prob. 29RCQCh. 7 - Prob. 30RCQCh. 7 - Prob. 31RCQCh. 7 - Power = work/time: P = W / t 32. Show that 50 W of...Ch. 7 -
33. Show that about 786 W of power is expended...Ch. 7 - Prob. 34RCQCh. 7 - 35. Show that the gravitational potential energy...Ch. 7 - Kinetic energy= 1 2 mass X speed : KE= 1 2 m v 2...Ch. 7 - 37. Calculate the kinetic energy of an 84-kg...Ch. 7 - Work-energy theorem: Work = KE
38. Show...Ch. 7 - 39. Show that a 2,500,000-J change in kinetic...Ch. 7 - Prob. 40RCQCh. 7 - Prob. 41RCQCh. 7 - 42. (a) How much work is done when you push a...Ch. 7 - 43. This question is typical on some driver’s...Ch. 7 - Belly-flop Bernie dives from atop a tall flagpole...Ch. 7 - Nellie Newton applies a force of 50 N to the end...Ch. 7 - 46. Consider an ideal pulley system. If you pull...Ch. 7 - 47. In raising a 5000-N piano with a pulley...Ch. 7 - 48. In the hydraulic machine shown, you observe...Ch. 7 - 49. How many watts of power do you expend when you...Ch. 7 - Emily holds a banana of mass m over the edge of a...Ch. 7 - 51. The mass and speed of the three vehicles, A,...Ch. 7 - 52. A ball is released from rest at the left of...Ch. 7 - 53. The roller coaster ride starts from rest at...Ch. 7 - Prob. 54RCQCh. 7 - Prob. 55RCQCh. 7 - Why do you do no work on a 25-kg backpack when you...Ch. 7 - If your friend pushes a lawnmower four times as...Ch. 7 - Why does one get tired pushing against a...Ch. 7 - Prob. 59RCQCh. 7 - Prob. 60RCQCh. 7 - Prob. 61RCQCh. 7 - When a rifle with a longer barrel is fired, the...Ch. 7 - Prob. 63RCQCh. 7 - 64. You and a flight attendant toss a ball back...Ch. 7 - Prob. 65RCQCh. 7 - Prob. 66RCQCh. 7 - Prob. 67RCQCh. 7 - Prob. 68RCQCh. 7 - 69. A physics instructor demonstrates energy...Ch. 7 - Prob. 70RCQCh. 7 - Prob. 71RCQCh. 7 - 72. A moving hammer hits a nail and drives it into...Ch. 7 - Prob. 73RCQCh. 7 - 74. Why does the force of gravity do work on a car...Ch. 7 - Prob. 75RCQCh. 7 - Prob. 76RCQCh. 7 - Prob. 77RCQCh. 7 - Prob. 78RCQCh. 7 - Prob. 79RCQCh. 7 - Prob. 80RCQCh. 7 - Prob. 81RCQCh. 7 - Prob. 82RCQCh. 7 - Prob. 83RCQCh. 7 - Prob. 84RCQCh. 7 - Prob. 85RCQCh. 7 - When the velocity of an object is doubled, by what...Ch. 7 - Prob. 87RCQCh. 7 - Prob. 88RCQCh. 7 - Prob. 89RCQCh. 7 - If your momentum is zero, is your kinetic energy...Ch. 7 - 91. If two objects have equal kinetic energies, do...Ch. 7 - 92. Two lumps of clay with equal and opposite...Ch. 7 - Scissors for cutting paper have long blades and...Ch. 7 - Prob. 94RCQCh. 7 - Prob. 95RCQCh. 7 - Prob. 96RCQCh. 7 - Prob. 97RCQCh. 7 - Prob. 98RCQCh. 7 - Prob. 99RCQCh. 7 - 100. Consider the identical balls released from...Ch. 7 - Prob. 101RCQCh. 7 - Prob. 102RCQCh. 7 - Prob. 103RCQCh. 7 - Prob. 104RCQCh. 7 - Prob. 105RCQCh. 7 - Prob. 106RCQCh. 7 - Prob. 107RCQCh. 7 - Prob. 108RCQCh. 7 - 109. Your discussion partner is confused about...Ch. 7 - 110. In the absence of air resistance, a ball...Ch. 7 - 111. You’re on a rooftop and you throw one ball...Ch. 7 - 112. In the pulley system shown, block A has a...Ch. 7 - Prob. 113RCQCh. 7 - Prob. 114RCQCh. 7 - Prob. 115RCQCh. 7 - Prob. 116RCQCh. 7 - Prob. 117RCQCh. 7 - 118. Consider a bob attached by a string, a simple...Ch. 7 - Consider a satellite in a circular orbit above...Ch. 7 - 120. Consider the swinging-balls apparatus. If two...Ch. 7 - To combat wasteful habits, we often speak of...Ch. 7 - Prob. 122RCQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 7. A race car accelerates from rest to 55 m s-1 in 5.0 seconds. The acceleration of the car Is m s-² 8. An object's speed increases uniformly from 10.5 km per hour to 99.8 km per hour in 2.41 seconds. Calculate the acceleration in m s-2 and express your answer to three significant figures. 9. The acceleration-time graph of a car is shown below. The initial speed of the car is 5.0 m s-1. # Acceleration (ms) 12 8.0- 4.0- 2.0 4.0 6.0 Time (s) Calculate the velocity of the car at t = 4.0 s. 3arrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- Problem Seven. A football receiver running straight downfield at 5.60 m/s is 11.5 m in front of the quarterback when a pass is thrown downfield at an angle of 35.0° horizon. above the 8.) If the receiver never changes speed and the ball is caught at the same height from which it was thrown, find the distance between the quarterback and the receiver when the catch is made. (A) 21.3 (B) 17.8 (C) 18.8 (D) 19.9 (E) 67.5arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- Please view both photos, and answer the question correctly please. Thank you!!arrow_forwardA thrown brick hits a window, but doesn't break it. Instead it reverses direction and ends down on the ground below the window. Since the brick didn't break the glass, we know: О The force of the brick on the glass > the force of the glass on the brick. О The force of the brick on the glass the force of the glass on the brick. = О The force of the brick on the glass < the force of the glass on the brick. О The brick didn't slow down as it broke the glass.arrow_forwardAlexandra (wearing rubber boots for traction) is attempting to drag her 32.6-kg Golden Retriever across the smooth ice by applying a horizontal force. What force must she apply to move the dog with a constant speed of 0.950 m/s? ☐ 31.0 lb. ☐ 319 kg. ○ Zero. 32.6 kg.arrow_forward
- The figure shows a graph of the acceleration of an object as a function of the net force acting on it. The mass of this object, in grams, is closest to 11 a(m/s²) 8.0+ 6.0- 4.0- 2.0- 0+ F(N) 0.00 0.50 1.00 ☐ 130 ○ 8000 ☐ 89arrow_forwardValues that are within standard deviations represent measurements that are considered to be near the true value. Review the data from the lab and determine whether your data is within standard deviations. Report, using numerical values, whether your data for each angle is within standard deviations. An acceptable margin of error typically falls between 4% and 8% at the 95% confidence level. Review your data for each angle to determine whether the margin of error is within an acceptable range. Report with numerical values, whether your data for each angle is within an acceptable margin of error. Can you help explain what my data means in terms of the standard deviation and the ME? Thanks!arrow_forwardA sinusoidal wave is propagating along a stretched string that lies along the x-axis. The displacement of the string as a function of time is graphed in (Figure 1) for particles at x = 0 and at x = 0.0900 m. You are told that the two points x = 0 and x = 0.0900 m are within one wavelength of each other. If the wave is moving in the +x-direction, determine the wavelength. If instead the wave is moving in the -x-direction, determine the wavelength. Please show all stepsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY