Concept explainers
Find the rank of the controllability matrix for the four mass system in all of the cases that a single control is applied to each of the four masses and compare your results with the conclusions obtained in Problem 4. (Note that by symmetry considerations, it is only necessary to consider one of the masses on the end and one of the interior masses.)
Repeat Problem 2 for a system of four masses connected by springs. Give a physical interpretation of the normal modes of vibration. Does the normal mode representation rule out complete controllability for the case of a scalar control applied to any single mass? Explain.
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
DIFFERENTIAL EQUATIONS-NEXTGEN WILEYPLUS
Additional Math Textbook Solutions
Introductory Statistics
A First Course in Probability (10th Edition)
Basic Business Statistics, Student Value Edition
Algebra and Trigonometry (6th Edition)
STATISTICS F/BUSINESS+ECONOMICS-TEXT
Intro Stats, Books a la Carte Edition (5th Edition)
- could you explain this using stoke theoremi already circled the correct answerarrow_forwardTRIANGLES INDEPENDENT PRACTICE ription Criangle write and cow Using each picture or description of triangle write and solve an equation in ordering the number of degrees in each angle TRIANGLE EQUATION & WORK ANGLE MEASURES A B -(7x-2)° (4x) (3x)° (5x − 10) C (5x – 2) (18x) E 3. G 4. H (16x)° LL 2A= 2B= ZE=arrow_forwardi circled the correct answer could you explain how to get that answer, as well as disprove the other optionsarrow_forwardThe position of a particle that moves along the x-axis is defined by x = - 3t^2 + 12^t - 6 f, where t is in seconds. For the time interval t = 0 to t = 3 s, (1) plot the position, velocity, and acceleration as functions of time; (2) calculate the distance traveled; and (3) determine the displacement of the particleshow the graph and write the solution with a penarrow_forwardThe position of a particle that moves along the x-axis is defined by x = - 3t^2 + 12^t - 6 f, where t is in seconds. For the time interval t = 0 to t = 3 s, (1) plot the position, velocity, and acceleration as functions of time; (2) calculate the distance traveled; and (3) determine the displacement of the particleshow the graph and write the solution with a penarrow_forwardThe answer for number 1 is D Could you show me whyarrow_forwardThe path of a particle moving in a straight line is given by s = t^3 - 6t^2+ 9t + 4, where s is in ft and t in seconds. a. Finds and a when v = 0. b. Find s and v when a = 0.show the graph if needed and write the solution with a penarrow_forwardfind the roots it may help to know b =1arrow_forwardThe answer is C Could you show me how to do itarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage