For the following exercises, use this scenario: A cable hanging under its own weight has a slope S = d y / d x that satisfies d S / d x = c 1 + S 2 . The constant c is the ratio of cable density to tension. 424. Sketch the cable and determine how far down it sags at x = 0 .
For the following exercises, use this scenario: A cable hanging under its own weight has a slope S = d y / d x that satisfies d S / d x = c 1 + S 2 . The constant c is the ratio of cable density to tension. 424. Sketch the cable and determine how far down it sags at x = 0 .
For the following exercises, use this scenario: A cable hanging under its own weight has a slope
S
=
d
y
/
d
x
that satisfies
d
S
/
d
x
=
c
1
+
S
2
. The constant c is the ratio of cable density to tension.
424. Sketch the cable and determine how far down it sags at
x
=
0
.
The masses measured on a population of 100 animals were grouped in the
following table, after being recorded to the nearest gram
Mass
89 90-109 110-129 130-149 150-169 170-189 > 190
Frequency 3
7 34
43
10
2
1
You are given that the sample mean of the data is 131.5 and the sample
standard deviation is 20.0. Test the hypothesis that the distribution of masses
follows a normal distribution at the 5% significance level.
Let l=2L\sqrt{5} and P=(1,2) in the Poincaré plane. Find the uniqe line l' through P such that l' is orthogonal to l
Construct a triangle in the Poincare plane with all sides equal to ln(2). (Hint: Use the fact that, the circle with center (0,a) and radius ln(r), r>1 in the Poincaré plane is equal to the point set { (x,y) : x^2+(y-1/2(r+1/r)a)^2=1/4(r-1/r)^2a^2 }
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY