For the following exercises, find the exact area of the region bounded by the given equations if possible. If you are unable to determine the intersection points analytically, use a calculator to approximate the intersection points with three decimal places and determine the approximate area of the region. 39. [T] y = x 2 and y = 1 − x 2
For the following exercises, find the exact area of the region bounded by the given equations if possible. If you are unable to determine the intersection points analytically, use a calculator to approximate the intersection points with three decimal places and determine the approximate area of the region. 39. [T] y = x 2 and y = 1 − x 2
For the following exercises, find the exact area of the region bounded by the given equations if possible. If you are unable to determine the intersection points analytically, use a calculator to approximate the intersection points with three decimal places and determine the approximate area of the region.
28. (a) Under what conditions do we say that two random variables X and Y are
independent?
(b) Demonstrate that if X and Y are independent, then it follows that E(XY) =
E(X)E(Y);
(e) Show by a counter example that the converse of (ii) is not necessarily true.
7. [10 marks]
Let G = (V,E) be a 3-connected graph with at least 6 vertices. Let C be a cycle in G
of length 5. We show how to find a longer cycle in G.
(a) Let x be a vertex of G that is not on C. Show that there are three C-paths
Po, P1, P2 that are disjoint except at the shared initial vertex and only intersect
C at their final vertices.
(b) Show that at least two of P0, P1, P2 have final vertices that are adjacent along C.
(c) Combine two of Po, P1, P2 with C to produce a cycle in G that is longer than C.
1. Let X and Y be random variables and suppose that A = F. Prove that
Z XI(A)+YI(A) is a random variable.
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY