
Interpretation:
Determine the stability of the fixed point at the origin and find is there any other fixed points for the system. Depending on other parameters sketch the qualitatively different types of phase portrait.
Concept Introduction:
The parametric curves traced by solutions of a differential equation are known as trajectories.
The geometrical representation of collection of trajectories in a phase plane is called as phase portrait.
The point which satisfies the condition
Closed Orbit corresponds to periodic solution of the system i.e.
If nearby trajectories moving away from the fixed point then the point is said to be saddle point.
If the trajectories swirling around the fixed point, then it is an unstable fixed point.
If nearby trajectories moving away from the fixed point, then the point is said to be unstable fixed point.
If nearby trajectories moving towards the fixed point, then the point is said to be stable fixed point.
To check the stability of fixed point use Jacobian matrix
The point

Answer to Problem 7E
Solution:
The stability of the origin depends upon the values of the various parameters.
The other fixed points for the system are
The different qualitatively phase portrait are shown below.
Explanation of Solution
a)
The given system equations are
Fordetermining the stability of fixed point
Use the Jacobian matrix
The expression of the Jacobian matrix is
Substitute the expressions of
The above Jacobian matrix at the origin becomes,
The eigenvalues of the above Jacobian matrix are
From the above expressions of eigenvalues, the origin is unstable, if
And the origin is stable point if
Thus, the system is stable at origin the value of
(b)
To estimate the other fixed point of the system put
Putting
From the above equation, two conditions are determined.
Put
From the above equation, two conditions are determined.
Now, substituting
Thus, the one of the fixed point is
Now, substituting
Thus, the another fixed point is at
Therefore, there exists another two fixed point at
To check the stability of these points, use Jacobian matrix
Let’s check the stability of the fixed point
Substituting expression of
By substituting
The Jacobian matrix at the point
Here, the Jacobian matrixes are triangular matrix.
And
The eigenvalues of the triangular matrix are the diagonal elements.
Thus, the eigenvalues of Jacobian matrix
The stability of the fixed point
Both the eigenvalues have negative real parts. Hence the fixed point is stable.
If one of the eigenvalue has positive real part and another having negative real part, then the fixed point is saddle fixed point. If both eigenvalues have positive real part, then the fixed point is unstable.
And eigenvalues of Jacobian matrix
The stability of the fixed point
If the both the eigenvalues have negative real parts, then the fixed point is stable.
If one of the eigenvalue has positive real part and another having negative real part, then the fixed point is saddle fixed point. If both eigenvalues have positive real part, then the fixed point is unstable.
(c) The different phase portrait for the different value of the parameter constant is plotted as:
Considering a constant parameter is as follows:
The phase portrait for the above constant value is plotted as follows:
This phase portrait describes that
Considering a constant parameter is as follows:
This phase portrait describes that stable point is on the
Considering a constant parameter is as follows:
The phase portrait describes that the stable point is on
This phase portrait describes that there are infinite number of fixed points in the first quadrant of the graph and an unstable point at origin.
There are four different qualitatively phase portrait can be sketched for the system and there is no possibility of other phase portrait because the nullclines are axes and parallel lines.
Want to see more full solutions like this?
Chapter 6 Solutions
Nonlinear Dynamics and Chaos
- Can you please explain how to go about completing this table in simplest terms please. Thank you fx f(-1/3x) (2,4) (-3,6)arrow_forwardA population growing with harvesting will behave according to the differential equation dy dt = 0.06y(1- У с 1800 y(0) = yo Find the value for c for which there will be only one equilibrium solution to the differential equation C = If c is less than the value found above, there will be equilibria. If c is greater than the value found above, there will be equilibria.arrow_forwardmicrosoft excel iclude fomulasarrow_forward
- f(x) 1/3 f(2(x-2))+4 (2,4) (-3,6) Please explain in step by step simple terms how to answer this questionarrow_forwardPlease help step by step simple terms how to answer this question Given the parent function f(x)=1/x, determine the equation of the new function after the following transformations reflection over x and y axis vertical stretch by a factor of 6 horizontal compression by a factor of 1/3 translated 4 spaces left , 9 spaces up Clearly state the domain and rangearrow_forwardGiven f(x) = 6x - 7, determine f-1(10) Please explain step by step how to answer this question in simple termsarrow_forward
- pls helparrow_forwardFind the general solution of the differential equation: y'-3y = te¹t 4t Use lower case c for the constant in your answer.arrow_forwardUse the Cauchy Riemann equations in polar form to show where it is holomorphic. Then use the formula f'(z)=e^{-i theta}[ur+ivr] to show that the derivative is f'(z)=i/z * f(z)arrow_forward
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,



