Nonlinear Dynamics and Chaos
Nonlinear Dynamics and Chaos
2nd Edition
ISBN: 9780813349107
Author: Steven H. Strogatz
Publisher: PERSEUS D
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 6.1, Problem 14E
Interpretation Introduction

Interpretation:

To find the equation of the stable manifold of the system x˙ = x + e- y, y˙ = -y. Also, check if an analytical result produces a curve with the same shape as the stable manifold shown in Figure 6.1.4.

Concept Introduction:

The equation for stable manifold can be found by introducing the new variable u = x + 1 in the given system.

The equation for stable manifold is given by y = a1u + a2u2+ O(u3).

e- y= 1 - y + y22

Expert Solution & Answer
Check Mark

Answer to Problem 14E

Solution:

a) The equation for stable manifold is y = 2u +(43)u2+ O(u3).

b) With the same shape as the stable manifold shown in Figure 6.1.4, the analytical result produces a curve.

Explanation of Solution

a) The system is given as:

x˙ = x + e- y, y˙ = -y

The given equations can be rewritten as:

dxdt = x + e- y, dydt = -y

It is given that the system has one fixed saddle point at (-1,0).

Introducing the new variable u = x + 1 or x = u - 1.

Substituting x = u - 1 in the equation dxdt = x + e- y,

dudt = u - 1 + e- y

Dividing the equation dydt = -y by the above equation,

(dydt)(dtdu) = -yu - 1 + e- y

dydu = -yu - 1 + e- y     .............................................  (1)

The point (x, y) lies on the stable manifold.

The equation for stable manifold is y = a1u + a2u2+ O(u3).

Differentiating both sides with respect to u,

dydu = a1 + 2 a2u    ................................................  (2)

From equations (1) and (2),

-yu - 1 + e- y = a1 + 2 a2u

Since e- y= 1 - y + y22, therefore,

-yu - 1 + 1 - y + y22 = a1 + 2 a2u

-yu - y + y22 = a1 + 2 a2u

Substituting y = a1u + a2u2+ O(u3) in the above equation,

-(a1u + a2u2+ O(u3))u - (a1u + a2u2+ O(u3)) + (a1u + a2u2+ O(u3))22 = a1 + 2 a2u

Eliminating all the terms higher than the second order term in u,

-(a1u + a2u2)u - (a1u + a2u2) + (a1u)22 = a1 + 2 a2u

-(a1u + a2u2) = (a1 + 2 a2u)(u - (a1u + a2u2) + (a1u)22)

- a1u - a2u2 = (a1 + 2 a2u)(u - a1u - a2u2 + a12u22)

- a1u - a2u2 = a1u - a12u - a1a2u2a13u22 + 2 a2u2- 2 a1a2u2 - 2 a22u3 + a12a2u3    ..................  (3)

Dividing both sides by u,

- a1 - a2u = a1 - a12 - a1a2u+ a13u2 + 2 a2u- 2 a1a2u - 2 a22u2 + a12a2u2

Simplifying it further,

- 2 a1 + a12 = 3 a2u - 3 a1a2u + a13u2 - 2 a22u2 + a12a2u2

- 2 a1 + a12 = u (3 a2 - 3 a1a2 + a132 - 2 a22u + a12a2u)

To solve for equilibrium point, substituting u = 0,

- 2 a1 + a12 = 0

a1(a1- 2) = 0

a1 = 0, 2

Since a1 = 0 gives the unstable manifold, considering a1 = 2.

Comparing the coefficients of u2 from equation (3),

- a2 = - a1a2a132 + 2 a2- 2 a1a2

Substituting a1= 2,

- a2 = - 2a2(2)32 + 2 a2- 2(2)a2

- a2 =  4 - 4a2

3a2 =  4

a2 =  43

Substituting a1= 2 and a2 =  43 in the equation for stable manifold,

y = 2u +(43)u2+ O(u3)

Thus, the equation for stable manifold for the given system is y = 2u +(43)u2+ O(u3).

b) The graph of the stable manifold on the phase portrait is shown below.

Nonlinear Dynamics and Chaos, Chapter 6.1, Problem 14E

From the above graph, it is clear that with the same shape as the stable manifold shown in Figure 6.1.4 the analytical result produces a curve.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 6 Solutions

Nonlinear Dynamics and Chaos

Ch. 6.1 - Prob. 11ECh. 6.1 - Prob. 12ECh. 6.1 - Prob. 13ECh. 6.1 - Prob. 14ECh. 6.2 - Prob. 1ECh. 6.2 - Prob. 2ECh. 6.3 - Prob. 1ECh. 6.3 - Prob. 2ECh. 6.3 - Prob. 3ECh. 6.3 - Prob. 4ECh. 6.3 - Prob. 5ECh. 6.3 - Prob. 6ECh. 6.3 - Prob. 7ECh. 6.3 - Prob. 8ECh. 6.3 - Prob. 9ECh. 6.3 - Prob. 10ECh. 6.3 - Prob. 11ECh. 6.3 - Prob. 12ECh. 6.3 - Prob. 13ECh. 6.3 - Prob. 14ECh. 6.3 - Prob. 15ECh. 6.3 - Prob. 16ECh. 6.3 - Prob. 17ECh. 6.4 - Prob. 1ECh. 6.4 - Prob. 2ECh. 6.4 - Prob. 3ECh. 6.4 - Prob. 4ECh. 6.4 - Prob. 5ECh. 6.4 - Prob. 6ECh. 6.4 - Prob. 7ECh. 6.4 - Prob. 8ECh. 6.4 - Prob. 9ECh. 6.4 - Prob. 10ECh. 6.4 - Prob. 11ECh. 6.5 - Prob. 1ECh. 6.5 - Prob. 2ECh. 6.5 - Prob. 3ECh. 6.5 - Prob. 4ECh. 6.5 - Prob. 5ECh. 6.5 - Prob. 6ECh. 6.5 - Prob. 7ECh. 6.5 - Prob. 8ECh. 6.5 - Prob. 9ECh. 6.5 - Prob. 10ECh. 6.5 - Prob. 11ECh. 6.5 - Prob. 12ECh. 6.5 - Prob. 13ECh. 6.5 - Prob. 14ECh. 6.5 - Prob. 15ECh. 6.5 - Prob. 16ECh. 6.5 - Prob. 17ECh. 6.5 - Prob. 18ECh. 6.5 - Prob. 19ECh. 6.5 - Prob. 20ECh. 6.6 - Prob. 1ECh. 6.6 - Prob. 2ECh. 6.6 - Prob. 3ECh. 6.6 - Prob. 4ECh. 6.6 - Prob. 5ECh. 6.6 - Prob. 6ECh. 6.6 - Prob. 7ECh. 6.6 - Prob. 8ECh. 6.6 - Prob. 9ECh. 6.6 - Prob. 10ECh. 6.6 - Prob. 11ECh. 6.7 - Prob. 1ECh. 6.7 - Prob. 2ECh. 6.7 - Prob. 3ECh. 6.7 - Prob. 4ECh. 6.7 - Prob. 5ECh. 6.8 - Prob. 1ECh. 6.8 - Prob. 2ECh. 6.8 - Prob. 3ECh. 6.8 - Prob. 4ECh. 6.8 - Prob. 5ECh. 6.8 - Prob. 6ECh. 6.8 - Prob. 7ECh. 6.8 - Prob. 8ECh. 6.8 - Prob. 9ECh. 6.8 - Prob. 10ECh. 6.8 - Prob. 11ECh. 6.8 - Prob. 12ECh. 6.8 - Prob. 13ECh. 6.8 - Prob. 14E
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY