Concept explainers
Interpretation:
To find the equation of the stable manifold of the system
Concept Introduction:
The equation for stable manifold can be found by introducing the new variable
The equation for stable manifold is given by
Answer to Problem 14E
Solution:
a) The equation for stable manifold is
b) With the same shape as the stable manifold shown in Figure
Explanation of Solution
a) The system is given as:
The given equations can be rewritten as:
It is given that the system has one fixed saddle point at
Introducing the new variable
Substituting
Dividing the equation
The point
The equation for stable manifold is
Differentiating both sides with respect to
From equations
Since
Substituting
Eliminating all the terms higher than the second order term in
Dividing both sides by
Simplifying it further,
To solve for equilibrium point, substituting
Since
Comparing the coefficients of
Substituting
Substituting
Thus, the equation for stable manifold for the given system is
b) The graph of the stable manifold on the phase portrait is shown below.
From the above graph, it is clear that with the same shape as the stable manifold shown in Figure
Want to see more full solutions like this?
Chapter 6 Solutions
Nonlinear Dynamics and Chaos
- (c) Suppose that all the pages are black and white, but each group of 25 con- secutive pages (1-25, 26-50, 51-75, 76-100, 101-125) must be assigned to the same printer. Each printer can be assigned 0, 25, 50, 75, 100, or 125 pages to print. How many ways are there for the 125 pages to be assigned to the five printers?arrow_forwardRuff, Inc. makes dog food out of chicken and grain. Chicken has 10 grams of protein and 5 grams of fat per ounce, and grain has 2 grams of protein and 2 grams of fat per ounce. A bag of dog food must contain at least 222 grams of protein and at least 162 grams of fat. If chicken costs 11¢ per ounce and grain costs 1¢ per ounce, how many ounces of each should Ruff use in each bag of dog food to minimize cost? (If an answer does not exist, enter DNE.)arrow_forwardSolve the linear system of equations attached using Gaussian elimination (not Gauss-Jordan) and back subsitution. Remember that: A matrix is in row echelon form if Any row that consists only of zeros is at the bottom of the matrix. The first non-zero entry in each other row is 1. This entry is called aleading 1. The leading 1 of each row, after the first row, lies to the right of the leading 1 of the previous row.arrow_forward
- 7. Show that for R sufficiently large, the polynomial P(z) in Example 3, Sec. 5, satisfies the inequality |P(z)| R. Suggestion: Observe that there is a positive number R such that the modulus of each quotient in inequality (9), Sec. 5, is less than |an|/n when |z| > R.arrow_forward9. Establish the identity 1- 1+z+z² + 2n+1 ... +z" = 1- z (z1) and then use it to derive Lagrange's trigonometric identity: 1 1+ cos cos 20 +... + cos no = + 2 sin[(2n+1)0/2] 2 sin(0/2) (0 < 0 < 2л). Suggestion: As for the first identity, write S = 1+z+z² +...+z" and consider the difference S - zS. To derive the second identity, write z = eie in the first one.arrow_forward8. Prove that two nonzero complex numbers z₁ and Z2 have the same moduli if and only if there are complex numbers c₁ and c₂ such that Z₁ = c₁C2 and Z2 = c1c2. Suggestion: Note that (i≤ exp (101+0) exp (01-02) and [see Exercise 2(b)] 2 02 Ꮎ - = = exp(i01) exp(101+0) exp (i 01 - 02 ) = exp(102). i 2 2arrow_forward
- 1) Compute the inverse of the following matrix. 0 1 1 A = 5 1 -1 2-3 -3arrow_forward2) Consider the matrix M = [1 2 3 4 5 0 2 3 4 5 00345 0 0 0 4 5 0 0 0 0 5 Determine whether the following statements are True or False. A) M is invertible. B) If R5 and Mx = x, then x = 0. C) The last row of M² is [0 0 0 0 25]. D) M can be transformed into the 5 × 5 identity matrix by a sequence of elementary row operations. E) det (M) 120 =arrow_forward3) Find an equation of the plane containing (0,0,0) and perpendicular to the line of intersection of the planes x + y + z = 3 and x y + z = 5. -arrow_forward
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning