Concept explainers
Interpretation:
Find the fixed points and classify them, sketch the neighboring trajectories
Concept Introduction:
The parametric curves traced by solutions of a differential equation are known as trajectories.
The geometrical representation of a collection of trajectories in a phase plane is called a phase portrait.
The point which satisfies the condition
Closed Orbit corresponds to the periodic solution of the system i.e.
If nearby trajectories moving away from the fixed point then the point is said to be saddle point.
If the trajectories swirling around the fixed point then it is an unstable fixed point.
If nearby trajectories moving towards the fixed point then the point is said to be a stable fixed point.
To check the stability of fixed-point, use the Jacobian matrix:
The point
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Nonlinear Dynamics and Chaos
- 3 Evaluate the determinants 5 17 3 0 1 2 -10-30 (a) 2 4-3 (b) -2 3 0 1 11 0 2 10-10arrow_forward(a) Given z = x + jy determine if f (z) = z4 is analytic.(b) On an Argand Diagram sketch the region |z| < 1.(c) Map the region |z| < 1 into the function plane f (z) = U + jV , defined as f (z) = z4.arrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell