Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
11th Edition
ISBN: 9781259639272
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
bartleby

Videos

Textbook Question
Book Icon
Chapter 6.3, Problem 6.121P

6.119 through 6.121 Each of the frames shown consists of two L-shaped members connected by two rigid links. For each frame, determine the reactions at the supports and indicate whether the frame is rigid.

Chapter 6.3, Problem 6.121P, 6.119 through 6.121 Each of the frames shown consists of two L-shaped members connected by two rigid

Fig. P6.121

Expert Solution & Answer
Check Mark
To determine

The reactions at the frame and the rigidness of the frame.

Answer to Problem 6.121P

The reactions at the frame for figure (a) is B=2P_ towards right, A=2.24P_ at 26.6°_ above the positive x axis and the rigidness of the frame in figure (a) rigid, for figure (b) the reaction is P=0 and the system is not rigid, and for figure (c) the reactions are A=P_ upwards, C=P_ upwards, B=P_ and the system is rigid.

Explanation of Solution

The following figure gives the free body diagram of the first part of the member in figure P6.121(a).

Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics, Chapter 6.3, Problem 6.121P , additional homework tip  1

Write the equation to find the moment of force.

M=Fa

Here, F is the force acting and a is the perpendicular distance from the force to the point about which the moment is calculated.

Write the equation to find the total moment about the point A.

ΣMA=Σ(Fa)

Write the equations for equilibrium for the free body diagram in figure 1.

ΣMA=0 (I)

ΣFx=0 (II)

ΣFy=0 (III)

Here, MA is the torque about the point A, Fy is the force in the y direction, and Fx is the force in the x direction.

The following figure gives the free body diagram of the second part of the member in figure P6.121(a).

Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics, Chapter 6.3, Problem 6.121P , additional homework tip  2

Write the equations for equilibrium for the free body diagram in figure 2.

ΣMB=0 (IV)

ΣFx=0 (V)

ΣFy=0 (VI)

Here, Fx is the force in the x direction, Fy is the force in the y direction and MB is the torque about the point B.

The following figure gives the free body diagram of the first part of the member in figure P6.119(b).

Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics, Chapter 6.3, Problem 6.121P , additional homework tip  3

Write the equations for equilibrium for the free body diagram in figure 3.

ΣME=0 (VII)

Here, ME is the torque about the point E.

The following figure gives the free body diagram of the second part of the member in figure P6.119(b).

Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics, Chapter 6.3, Problem 6.121P , additional homework tip  4

Write the equations for equilibrium for the free body diagram in figure 4.

ΣMB=0 (VIII)

Here, MB is the torque about the point B.

The following figure gives the free body diagram of the member in figure P6.119(c).

Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics, Chapter 6.3, Problem 6.121P , additional homework tip  5

Write the equations for equilibrium for the free body diagram in figure 5.

ΣFy=0 (IX)

ΣMD=0 (X)

ΣFx=0 (XI)

Here, MD is the torque about the point D, Fx is the force in the x direction, and Fy is the force in the y direction.

The following figure gives the free body diagram of right part of the member in figure P6.119(c).

Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics, Chapter 6.3, Problem 6.121P , additional homework tip  6

Write the equations for equilibrium for the free body diagram in figure 6.

ΣMD=0 (XII)

ΣFx=0 (XIII)

Here, MD is the torque about the point D, and Fx is the force in the x direction.

Write the expression to find the magnitude of the vector from its components.

C=Cx2+Cy2 (XIV)

Here,Cx is the x component of the vector C and Cy is the y component of the vector C.

Write the equation to find the angle of orientation of the vector C.

θ=tan1(CyCx) (XV)

Conclusion:

Solve equation (I) using figure 1.

aF12aP=0

Rewrite the above equation.

F1=2P

Solve equation (III) using figure 1.

AyP=0

Rewrite the above equation.

Ay=P

Solve equation (IV) using figure 2.

aF2=0

Rewrite the above equation.

F2=0

Solve equation (V) using figure 2.

Bx+F1=0

Substitute 2P for F1 and rewrite the above equation to find Bx.

Bx=F1=2P

Solve equation (VI) using figure 2.

AxF1+F2=0

Substitute 2P for F1, 0 for F2 and rewrite the above equation to find Ax.

Ax=F1+F2=2P+0=2P

Rewrite equation (XIV) in terms of the vector A.

A=Ax2+Ay2

Substitute 2P for Ax, and P for Ay in the above equation.

A=(2P)2+(P)2=2.236P

Rewrite equation (XV) in terms of the vector A.

θ=tan1(AyAx)

Substitute 2P for Ax, and P for Ay in the above equation.

θ=tan1(P2P)=26.56°

Rewrite equation (XIV) in terms of the vector B.

B=Bx2+By2

Substitute 2P for Bx, and 0 for By in the above equation.

B=(2P)2+(0)2=2P

Solve equation (VII) using figure 3.

a2P+a2Ax5a2Ay=0

Rewrite the above equation.

Ax5Ay=P

Solve equation (VIII) using figure 4.

3aP+aAx5aAy=0

Rewrite the above equation.

Ax5Ay=3P

Solve the conditions obtained from figure 3 and 4.

P=0

Solve equation (IX) using figure 5.

AP=0

Rewrite the above equation to find A.

A=P

Solve equation (X) using figure 5.

aF12aA=0

Substitute P for A and rewrite the above equation to find F1.

F1=2P

Solve equation (XI) using figure 5.

F2F1=0

Substitute 2P for F1 and rewrite the above equation to find F2.

F2=F1=2P

Solve equation (XII) using figure 6.

2aCaF1=0

Substitute 2P for F1 and rewrite the above equation to find C.

C=F12=P

Solve equation (XII) to the right using figure 6.

F1F2+Bx=0

Substitute 2P for F1, 2P for F2 and rewrite the above equation to find Bx.

Bx=F1+F2=2P+2P=0

Solve equation (XII) upwards using figure 6.

Bx+C=0

Substitute P for C and rewrite the above equation to find Bx.

Bx=C=P

Therefore, the reactions at the frame for figure (a) is B=2P_ towards right, A=2.24P_ at 26.6°_ above the positive x axis and the rigidness of the frame in figure (a) rigid, for figure (b) the reaction is P=0 and the system is not rigid, and for figure (c) the reactions are A=P_ upwards, C=P_ upwards, B=P_ and the system is rigid.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Two springs and two masses are attached in a straight vertical line as shown in Figure Q3. The system is set in motion by holding the mass m₂ at its equilibrium position and pushing the mass m₁ downwards of its equilibrium position a distance 2 m and then releasing both masses. if m₁ = m₂ = 1 kg, k₁ = 3 N/m and k₂ = 2 N/m. www.m k₁ = 3 (y₁ = 0). m₁ = 1 k2=2 (y₂ = 0) |m₂ = 1 Y2 y 2 System in static equilibrium (Net change in spring length =32-31) System in motion Figure Q3 - Coupled mass-spring system Determine the equations of motion y₁(t) and y₂(t) for the two masses m₁ and m₂ respectively: Analytically (hand calculations)
100 As a spring is heated, its spring constant decreases. Suppose the spring is heated and then cooled so that the spring constant at time t is k(t) = t sin N/m. If the mass-spring system has mass m = 2 kg and a damping constant b = 1 N-sec/m with initial conditions x(0) = 6 m and x'(0) = -5 m/sec and it is subjected to the harmonic external force f(t) = 100 cos 3t N. Find at least the first four nonzero terms in a power series expansion about t = 0, i.e. Maclaurin series expansion, for the displacement: Analytically (hand calculations)
this is answer to a vibrations question. in the last part it states an assumption of x2, im not sure where this assumption comes from. an answer would be greatly appreciated

Chapter 6 Solutions

Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics

Ch. 6.1 - Determine the force in each member of the Gambrel...Ch. 6.1 - Determine the force in each member of the Howe...Ch. 6.1 - Using the method of joints, determine the force in...Ch. 6.1 - 6.14 Determine the force in each member of the...Ch. 6.1 - Determine the force in each member of the Warren...Ch. 6.1 - Solve Problem 6.15 assuming that the load applied...Ch. 6.1 - Determine the force in each member of the Pratt...Ch. 6.1 - The truss shown is one of several supporting an...Ch. 6.1 - Determine the force in each member of the Pratt...Ch. 6.1 - Prob. 6.20PCh. 6.1 - Determine the force in each of the members located...Ch. 6.1 - Determine the force in member DE and in each of...Ch. 6.1 - Determine the force in each of the members located...Ch. 6.1 - The portion of truss shown represents the upper...Ch. 6.1 - For the tower and loading of Prob. 6.24 and...Ch. 6.1 - Solve Problem 6.24 assuming that the cables...Ch. 6.1 - Determine the force in each member of the truss...Ch. 6.1 - Determine the force in each member of the truss...Ch. 6.1 - 6.29 Determine whether the trusses of Probs....Ch. 6.1 - 6.30 Determine whether the trusses of Probs....Ch. 6.1 - Prob. 6.31PCh. 6.1 - Prob. 6.32PCh. 6.1 - For the given loading, determine the zero-force...Ch. 6.1 - Prob. 6.34PCh. 6.1 - Prob. 6.35PCh. 6.1 - Prob. 6.36PCh. 6.1 - The truss shown consists of six members and is...Ch. 6.1 - The truss shown consists of nine members and is...Ch. 6.1 - The truss shown consists of nine members and is...Ch. 6.1 - Solve Prob. 6.39 for P = 0 and Q = (900 N)k. 6.39...Ch. 6.1 - The truss shown consists of 18 members and is...Ch. 6.1 - The truss shown consists of 18 members and is...Ch. 6.2 - 6.43 A Mansard roof truss is loaded as shown....Ch. 6.2 - 6.44 A Mansard roof truss is loaded as shown....Ch. 6.2 - Determine the force in members BD and CD of the...Ch. 6.2 - Determine the force in members DF and DG of the...Ch. 6.2 - Prob. 6.47PCh. 6.2 - Prob. 6.48PCh. 6.2 - Determine the force in members CD and DF of the...Ch. 6.2 - Determine the force in members CE and EF of the...Ch. 6.2 - Determine the force in members DE and DF of the...Ch. 6.2 - Prob. 6.52PCh. 6.2 - Determine the force in members DF and DE of the...Ch. 6.2 - Prob. 6.54PCh. 6.2 - Prob. 6.55PCh. 6.2 - 6.56 A monosloped roof truss is loaded as shown....Ch. 6.2 - A Howe scissors roof truss is loaded as shown....Ch. 6.2 - A Howe scissors roof truss is loaded as shown....Ch. 6.2 - Determine the force in members AD, CD, and CE of...Ch. 6.2 - Determine the force in members DG, FG, and FH of...Ch. 6.2 - 6.61 Determine the force in members DG and FI of...Ch. 6.2 - Prob. 6.62PCh. 6.2 - Prob. 6.63PCh. 6.2 - Prob. 6.64PCh. 6.2 - The diagonal members in the center panels of the...Ch. 6.2 - The diagonal members in the center panels of the...Ch. 6.2 - Prob. 6.67PCh. 6.2 - Prob. 6.68PCh. 6.2 - Classify each of the structures shown as...Ch. 6.2 - Classify each of the structures shown as...Ch. 6.2 - Prob. 6.71PCh. 6.2 - 6.70 through 6.74 classify as determinate or...Ch. 6.2 - 6.70 through 6.74 classify as determinate or...Ch. 6.2 - 6.70 through 6.74 classify as determinate or...Ch. 6.3 - For the frame and loading shown, draw the...Ch. 6.3 - For the frame and loading shown, draw the...Ch. 6.3 - Draw the free-body diagram(s) needed to determine...Ch. 6.3 - Knowing that the pulley has a radius of 0.5 m,...Ch. 6.3 - 6.75 and 6.76 Determine the force in member BD and...Ch. 6.3 - 6.75 and 6.76 Determine the force in member BD and...Ch. 6.3 - For the frame and loading shown, determine the...Ch. 6.3 - Determine the components of all forces acting on...Ch. 6.3 - Prob. 6.79PCh. 6.3 - Prob. 6.80PCh. 6.3 - Determine the components of all forces acting on...Ch. 6.3 - Determine the components of all forces acting on...Ch. 6.3 - Determine the components of the reactions at A and...Ch. 6.3 - Determine the components of the reactions at D and...Ch. 6.3 - Determine the components of the reactions at A and...Ch. 6.3 - Determine the components of the reactions at A and...Ch. 6.3 - 6.87 Determine the components of the reactions at...Ch. 6.3 - The 48-lb load can be moved along the line of...Ch. 6.3 - The 48-lb load is removed and a 288-lb in....Ch. 6.3 - (a) Show that, when a frame supports a pulley at...Ch. 6.3 - Knowing that each pulley has a radius of 250 mm,...Ch. 6.3 - Knowing that the pulley has a radius of 75 mm,...Ch. 6.3 - Prob. 6.93PCh. 6.3 - Prob. 6.94PCh. 6.3 - Prob. 6.95PCh. 6.3 - Prob. 6.96PCh. 6.3 - Prob. 6.97PCh. 6.3 - Prob. 6.98PCh. 6.3 - Knowing that P = 90 lb and Q = 60 lb, determine...Ch. 6.3 - Knowing that P = 90 lb and Q = 60 lb, determine...Ch. 6.3 - For the frame and loading shown, determine the...Ch. 6.3 - For the frame and loading shown, determine the...Ch. 6.3 - Prob. 6.103PCh. 6.3 - 6.104 Solve Prob. 6.103 assuming that the 360-lb...Ch. 6.3 - For the frame and loading shown, determine the...Ch. 6.3 - Prob. 6.106PCh. 6.3 - The axis of the three-hinge arch ABC is a parabola...Ch. 6.3 - The axis of the three-hinge arch ABC is a parabola...Ch. 6.3 - Prob. 6.109PCh. 6.3 - Prob. 6.110PCh. 6.3 - 6.111, 6.112, and 6.113 Members ABC and CDE are...Ch. 6.3 - Prob. 6.112PCh. 6.3 - 6.111, 6.112, and 6.113 Members ABC and CDE are...Ch. 6.3 - Prob. 6.114PCh. 6.3 - Solve Prob. 6.112 assuming that the force P is...Ch. 6.3 - Prob. 6.116PCh. 6.3 - Prob. 6.117PCh. 6.3 - Prob. 6.118PCh. 6.3 - 6.119 through 6.121 Each of the frames shown...Ch. 6.3 - 6.119 through 6.121 Each of the frames shown...Ch. 6.3 - 6.119 through 6.121 Each of the frames shown...Ch. 6.4 - An 84-lb force is applied to the toggle vise at C....Ch. 6.4 - For the system and loading shown, draw the...Ch. 6.4 - Prob. 6.7FBPCh. 6.4 - The position of member ABC is controlled by the...Ch. 6.4 - The shear shown is used to cut and trim...Ch. 6.4 - A 100-lb force directed vertically downward is...Ch. 6.4 - Prob. 6.124PCh. 6.4 - The control rod CE passes through a horizontal...Ch. 6.4 - Solve Prob. 6.125 when (a) = 0, (b) = 6. Fig....Ch. 6.4 - The press shown is used to emboss a small seal at...Ch. 6.4 - The press shown is used to emboss a small seal at...Ch. 6.4 - Prob. 6.129PCh. 6.4 - The pin at B is attached to member ABC and can...Ch. 6.4 - Arm ABC is connected by pins to a collar at B and...Ch. 6.4 - Arm ABC is connected by pins to a collar at B and...Ch. 6.4 - The Whitworth mechanism shown is used to produce a...Ch. 6.4 - Prob. 6.134PCh. 6.4 - Prob. 6.135PCh. 6.4 - Prob. 6.136PCh. 6.4 - 6.137 and 6.138 Rod CD is attached to the collar D...Ch. 6.4 - 6.137 and 6.138 Rod CD is attached to the collar D...Ch. 6.4 - Two hydraulic cylinders control the position of...Ch. 6.4 - Prob. 6.140PCh. 6.4 - Prob. 6.141PCh. 6.4 - Prob. 6.142PCh. 6.4 - Prob. 6.143PCh. 6.4 - Prob. 6.144PCh. 6.4 - The pliers shown are used to grip a...Ch. 6.4 - 6.146 Determine the magnitude of the gripping...Ch. 6.4 - In using the bolt cutter shown, a worker applies...Ch. 6.4 - Prob. 6.148PCh. 6.4 - Prob. 6.149PCh. 6.4 - and 6.150 Determine the force P that must be...Ch. 6.4 - Prob. 6.151PCh. 6.4 - Prob. 6.152PCh. 6.4 - 6.153 The motion of the bucket of the front-end...Ch. 6.4 - Prob. 6.154PCh. 6.4 - The telescoping arm ABC is used to provide an...Ch. 6.4 - The telescoping arm ABC of Prob. 6.155 can be...Ch. 6.4 - The motion of the backhoe bucket shown is...Ch. 6.4 - Prob. 6.158PCh. 6.4 - Prob. 6.159PCh. 6.4 - In the planetary gear system shown, the radius of...Ch. 6.4 - Two shafts AC and CF, which lie in the vertical xy...Ch. 6.4 - Two shafts AC and CF, which lie in the vertical xy...Ch. 6.4 - The large mechanical tongs shown are used to grab...Ch. 6 - Using the method of joints, determine the force in...Ch. 6 - Using the method of joints, determine the force in...Ch. 6 - A stadium roof truss is loaded as shown. Determine...Ch. 6 - A stadium roof truss is loaded as shown. Determine...Ch. 6 - Determine the components of all forces acting on...Ch. 6 - Prob. 6.169RPCh. 6 - Knowing that the pulley has a radius of 50 mm,...Ch. 6 - For the frame and loading shown, determine the...Ch. 6 - For the frame and loading shown, determine the...Ch. 6 - Water pressure in the supply system exerts a...Ch. 6 - A couple M with a magnitude of 1.5 kNm is applied...Ch. 6 - Prob. 6.175RP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Material Science, Phase Diagrams, Part 1; Author: Welt der Werkstoffe;https://www.youtube.com/watch?v=G83ZaoB3XCc;License: Standard Youtube License