EBK THERMODYNAMICS: AN ENGINEERING APPR
EBK THERMODYNAMICS: AN ENGINEERING APPR
8th Edition
ISBN: 8220100257056
Author: CENGEL
Publisher: YUZU
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 6.11, Problem 35P

A refrigerator has a COP of 1.5. That is, the refrigerator removes 1.5 kWh of energy from the refrigerated space for each 1 kWh of electricity it consumes. Is this a violation of the first law of thermodynamics? Explain.

Blurred answer
Students have asked these similar questions
First monthly exam Gas dynamics Third stage Q1/Water at 15° C flow through a 300 mm diameter riveted steel pipe, E-3 mm with a head loss of 6 m in 300 m length. Determine the flow rate in pipe. Use moody chart. Q2/ Assume a car's exhaust system can be approximated as 14 ft long and 0.125 ft-diameter cast-iron pipe ( = 0.00085 ft) with the equivalent of (6) regular 90° flanged elbows (KL = 0.3) and a muffler. The muffler acts as a resistor with a loss coefficient of KL= 8.5. Determine the pressure at the beginning of the exhaust system (pl) if the flowrate is 0.10 cfs, and the exhaust has the same properties as air.(p = 1.74 × 10-3 slug/ft³, u= 4.7 x 10-7 lb.s/ft²) Use moody chart (1) MIDAS Kel=0.3 Q3/Liquid ammonia at -20°C is flowing through a 30 m long section of a 5 mm diameter copper tube(e = 1.5 × 10-6 m) at a rate of 0.15 kg/s. Determine the pressure drop and the head losses. .μ= 2.36 × 10-4 kg/m.s)p = 665.1 kg/m³
2/Y Y+1 2Cp Q1/ Show that Cda Az x P1 mactual Cdf Af R/T₁ 2pf(P1-P2-zxgxpf) Q2/ A simple jet carburetor has to supply 5 Kg of air per minute. The air is at a pressure of 1.013 bar and a temperature of 27 °C. Calculate the throat diameter of the choke for air flow velocity of 90 m/sec. Take velocity coefficient to be 0.8. Assume isentropic flow and the flow to be compressible. Quiz/ Determine the air-fuel ratio supplied at 5000 m altitude by a carburetor which is adjusted to give an air-fuel ratio of 14:1 at sea level where air temperature is 27 °C and pressure is 1.013 bar. The temperature of air decreases with altitude as given by the expression The air pressure decreases with altitude as per relation h = 19200 log10 (1.013), where P is in bar. State any assumptions made. t = ts P 0.0065h
36 2) Use the method of MEMBERS to determine the true magnitude and direction of the forces in members1 and 2 of the frame shown below in Fig 3.2. 300lbs/ft member-1 member-2 30° Fig 3.2. https://brightspace.cuny.edu/d21/le/content/433117/viewContent/29873977/View

Chapter 6 Solutions

EBK THERMODYNAMICS: AN ENGINEERING APPR

Ch. 6.11 - Does a heat engine that has a thermal efficiency...Ch. 6.11 - In the absence of any friction and other...Ch. 6.11 - Are the efficiencies of all the work-producing...Ch. 6.11 - Consider a pan of water being heated (a) by...Ch. 6.11 - Prob. 15PCh. 6.11 - Prob. 16PCh. 6.11 - A heat engine has a heat input of 3 104 Btu/h and...Ch. 6.11 - Prob. 18PCh. 6.11 - A 600-MW steam power plant, which is cooled by a...Ch. 6.11 - Prob. 20PCh. 6.11 - A heat engine with a thermal efficiency of 45...Ch. 6.11 - A steam power plant with a power output of 150 MW...Ch. 6.11 - An automobile engine consumes fuel at a rate of 22...Ch. 6.11 - Prob. 24PCh. 6.11 - Prob. 25PCh. 6.11 - A coal-burning steam power plant produces a net...Ch. 6.11 - An Ocean Thermal Energy Conversion (OTEC) power...Ch. 6.11 - What is the difference between a refrigerator and...Ch. 6.11 - Prob. 29PCh. 6.11 - In a refrigerator, heat is transferred from a...Ch. 6.11 - A heat pump is a device that absorbs energy from...Ch. 6.11 - Define the coefficient of performance of a...Ch. 6.11 - Define the coefficient of performance of a heat...Ch. 6.11 - Prob. 34PCh. 6.11 - A refrigerator has a COP of 1.5. That is, the...Ch. 6.11 - What is the Clausius expression of the second law...Ch. 6.11 - Show that the KelvinPlanck and the Clausius...Ch. 6.11 - Prob. 38PCh. 6.11 - Determine the COP of a heat pump that supplies...Ch. 6.11 - Prob. 40PCh. 6.11 - Prob. 41PCh. 6.11 - 6–42 An air conditioner removes heat steadily from...Ch. 6.11 - 6–43 A food department is kept at –12°C by a...Ch. 6.11 - A household refrigerator that has a power input of...Ch. 6.11 - When a man returns to his well-sealed house on a...Ch. 6.11 - Prob. 47PCh. 6.11 - Prob. 48PCh. 6.11 - 6–49 A heat pump is used to maintain a house at a...Ch. 6.11 - Prob. 50PCh. 6.11 - A household refrigerator runs one-fourth of the...Ch. 6.11 - Prob. 52PCh. 6.11 - Consider an office room that is being cooled...Ch. 6.11 - Prob. 54PCh. 6.11 - Refrigerant-134a enters the condenser of a...Ch. 6.11 - An inventor claims to have developed a resistance...Ch. 6.11 - Prob. 57PCh. 6.11 - A cold canned drink is left in a warmer room where...Ch. 6.11 - A block slides down an inclined plane with...Ch. 6.11 - Prob. 60PCh. 6.11 - Show that processes that use work for mixing are...Ch. 6.11 - Why does a nonquasi-equilibrium compression...Ch. 6.11 - Prob. 63PCh. 6.11 - Prob. 64PCh. 6.11 - Prob. 65PCh. 6.11 - Why are engineers interested in reversible...Ch. 6.11 - What are the four processes that make up the...Ch. 6.11 - Prob. 68PCh. 6.11 - Prob. 69PCh. 6.11 - Prob. 70PCh. 6.11 - Somebody claims to have developed a new reversible...Ch. 6.11 - Is there any way to increase the efficiency of a...Ch. 6.11 - Consider two actual power plants operating with...Ch. 6.11 - Prob. 74PCh. 6.11 - Prob. 75PCh. 6.11 - 6–76 A Carnot heat engine receives 650 kJ of heat...Ch. 6.11 - A Carnot heat engine operates between a source at...Ch. 6.11 - A heat engine operates between a source at 477C...Ch. 6.11 - Prob. 80PCh. 6.11 - Prob. 81PCh. 6.11 - In tropical climates, the water near the surface...Ch. 6.11 - 6–83 A well-established way of power generation...Ch. 6.11 - Prob. 84PCh. 6.11 - Prob. 85PCh. 6.11 - How can we increase the COP of a Carnot...Ch. 6.11 - In an effort to conserve energy in a heat-engine...Ch. 6.11 - Prob. 88PCh. 6.11 - Prob. 89PCh. 6.11 - 6–90 During an experiment conducted in a room at...Ch. 6.11 - Prob. 91PCh. 6.11 - An air-conditioning system operating on the...Ch. 6.11 - Prob. 93PCh. 6.11 - Prob. 94PCh. 6.11 - Prob. 95PCh. 6.11 - Prob. 96PCh. 6.11 - 6–97 A heat pump is used to maintain a house at...Ch. 6.11 - Prob. 98PCh. 6.11 - Prob. 99PCh. 6.11 - Prob. 100PCh. 6.11 - A commercial refrigerator with refrigerant-134a as...Ch. 6.11 - Prob. 102PCh. 6.11 - A heat pump is to be used for heating a house in...Ch. 6.11 - A Carnot heat pump is to be used to heat a house...Ch. 6.11 - A Carnot heat engine receives heat from a...Ch. 6.11 - Prob. 106PCh. 6.11 - Prob. 107PCh. 6.11 - Prob. 108PCh. 6.11 - Derive an expression for the COP of a completely...Ch. 6.11 - Prob. 110PCh. 6.11 - Prob. 111PCh. 6.11 - Prob. 112PCh. 6.11 - Prob. 113PCh. 6.11 - Someone proposes that the entire...Ch. 6.11 - Prob. 115PCh. 6.11 - Prob. 116PCh. 6.11 - Prob. 117PCh. 6.11 - It is often stated that the refrigerator door...Ch. 6.11 - Prob. 119RPCh. 6.11 - A Carnot heat pump is used to heat and maintain a...Ch. 6.11 - Prob. 121RPCh. 6.11 - Prob. 122RPCh. 6.11 - A refrigeration system uses a water-cooled...Ch. 6.11 - A heat pump with a COP of 2.8 is used to heat an...Ch. 6.11 - Prob. 125RPCh. 6.11 - Consider a Carnot refrigeration cycle executed in...Ch. 6.11 - Consider two Carnot heat engines operating in...Ch. 6.11 - Prob. 129RPCh. 6.11 - A heat engine operates between two reservoirs at...Ch. 6.11 - Prob. 132RPCh. 6.11 - An old gas turbine has an efficiency of 21 percent...Ch. 6.11 - Prob. 134RPCh. 6.11 - Prob. 135RPCh. 6.11 - Prob. 136RPCh. 6.11 - Prob. 137RPCh. 6.11 - Prob. 138RPCh. 6.11 - Prob. 139RPCh. 6.11 - A refrigeration system is to cool bread loaves...Ch. 6.11 - The drinking water needs of a production facility...Ch. 6.11 - Prob. 143RPCh. 6.11 - Prob. 145RPCh. 6.11 - Prob. 146RPCh. 6.11 - Prob. 147RPCh. 6.11 - Prob. 148RPCh. 6.11 - A heat pump with refrigerant-134a as the working...Ch. 6.11 - Prob. 150RPCh. 6.11 - Prob. 151RPCh. 6.11 - Prob. 153RPCh. 6.11 - Prob. 154RPCh. 6.11 - Prob. 155RPCh. 6.11 - A 2.4-m-high 200-m2 house is maintained at 22C by...Ch. 6.11 - Prob. 157FEPCh. 6.11 - Prob. 158FEPCh. 6.11 - A heat pump is absorbing heat from the cold...Ch. 6.11 - A heat engine cycle is executed with steam in the...Ch. 6.11 - A heat engine receives heat from a source at 1000C...Ch. 6.11 - Prob. 162FEPCh. 6.11 - A refrigeration cycle is executed with R-134a...Ch. 6.11 - A heat pump with a COP of 3.2 is used to heat a...Ch. 6.11 - A heat engine cycle is executed with steam in the...Ch. 6.11 - An air-conditioning system operating on the...Ch. 6.11 - Prob. 167FEPCh. 6.11 - Two Carnot heat engines are operating in series...Ch. 6.11 - Consider a Carnot refrigerator and a Carnot heat...Ch. 6.11 - A typical new household refrigerator consumes...Ch. 6.11 - A window air conditioner that consumes 1 kW of...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY