EBK THERMODYNAMICS: AN ENGINEERING APPR
8th Edition
ISBN: 8220100257056
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6.11, Problem 168FEP
Two Carnot heat engines are operating in series such that the heat sink of the first engine serves as the heat source of the second one. If the source temperature of the first engine is 1300 K and the sink temperature of the second engine is 300 K and the thermal efficiencies of both engines are the same, the temperature of the intermediate reservoir is
- (a) 625 K
- (b) 800 K
- (c) 860 K
- (d) 453 K
- (e) 758 K
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
As per the Carnot cycle efficiency, the thermal efficiency of heat engines increases with an increase in the temperature of the heat source. An inventor has proposed to use a heat pump to transfer the heat from the source to a high-temperature thermal medium before being used in the heat engine. The inventor has claimed this arrangement increases thermal efficiency. Evaluate the inventor's claim through the thermodynamic principles.
Consider a Carnot refrigerator and a Carnot heat pump operating between the same two thermal energy reservoirs. If the COP of the refrigerator is 3.4 , the COP of the heat pump is?
A heat engine is assumed to operate on a Carnot cycle. It receives 900kJ
heat from a high temperature reservoir at 550°C and rejects heat to a low
temperature reservoir at 30°C.
Calculate the thermal efficiency of the cycle.
What is QH and Q?
What is the net work produced by this cycle?
Does this process violate Kelvin-Plank statement? Explain.
An inventor claimed that he built a heat engine operating between
the same reservoirs that give a thermal efficiency of 80%.
Comments about his claim.
a.
b.
C.
d.
е.
f.
Draw this process on a Ts diagram with proper labelling.
If the cycle is reversed and operated as a heat pump, calculate its
performance.
g.
Chapter 6 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 6.11 - Describe an imaginary process that violates both...Ch. 6.11 - Describe an imaginary process that satisfies the...Ch. 6.11 - Describe an imaginary process that satisfies the...Ch. 6.11 - An experimentalist claims to have raised the...Ch. 6.11 - Prob. 5PCh. 6.11 - Consider the process of baking potatoes in a...Ch. 6.11 - What are the characteristics of all heat engines?Ch. 6.11 - What is the KelvinPlanck expression of the second...Ch. 6.11 - Is it possible for a heat engine to operate...Ch. 6.11 - Baseboard heaters are basically electric...
Ch. 6.11 - Does a heat engine that has a thermal efficiency...Ch. 6.11 - In the absence of any friction and other...Ch. 6.11 - Are the efficiencies of all the work-producing...Ch. 6.11 - Consider a pan of water being heated (a) by...Ch. 6.11 - Prob. 15PCh. 6.11 - Prob. 16PCh. 6.11 - A heat engine has a heat input of 3 104 Btu/h and...Ch. 6.11 - Prob. 18PCh. 6.11 - A 600-MW steam power plant, which is cooled by a...Ch. 6.11 - Prob. 20PCh. 6.11 - A heat engine with a thermal efficiency of 45...Ch. 6.11 - A steam power plant with a power output of 150 MW...Ch. 6.11 - An automobile engine consumes fuel at a rate of 22...Ch. 6.11 - Prob. 24PCh. 6.11 - Prob. 25PCh. 6.11 - A coal-burning steam power plant produces a net...Ch. 6.11 - An Ocean Thermal Energy Conversion (OTEC) power...Ch. 6.11 - What is the difference between a refrigerator and...Ch. 6.11 - Prob. 29PCh. 6.11 - In a refrigerator, heat is transferred from a...Ch. 6.11 - A heat pump is a device that absorbs energy from...Ch. 6.11 - Define the coefficient of performance of a...Ch. 6.11 - Define the coefficient of performance of a heat...Ch. 6.11 - Prob. 34PCh. 6.11 - A refrigerator has a COP of 1.5. That is, the...Ch. 6.11 - What is the Clausius expression of the second law...Ch. 6.11 - Show that the KelvinPlanck and the Clausius...Ch. 6.11 - Prob. 38PCh. 6.11 - Determine the COP of a heat pump that supplies...Ch. 6.11 - Prob. 40PCh. 6.11 - Prob. 41PCh. 6.11 - 6–42 An air conditioner removes heat steadily from...Ch. 6.11 - 6–43 A food department is kept at –12°C by a...Ch. 6.11 - A household refrigerator that has a power input of...Ch. 6.11 - When a man returns to his well-sealed house on a...Ch. 6.11 - Prob. 47PCh. 6.11 - Prob. 48PCh. 6.11 - 6–49 A heat pump is used to maintain a house at a...Ch. 6.11 - Prob. 50PCh. 6.11 - A household refrigerator runs one-fourth of the...Ch. 6.11 - Prob. 52PCh. 6.11 - Consider an office room that is being cooled...Ch. 6.11 - Prob. 54PCh. 6.11 - Refrigerant-134a enters the condenser of a...Ch. 6.11 - An inventor claims to have developed a resistance...Ch. 6.11 - Prob. 57PCh. 6.11 - A cold canned drink is left in a warmer room where...Ch. 6.11 - A block slides down an inclined plane with...Ch. 6.11 - Prob. 60PCh. 6.11 - Show that processes that use work for mixing are...Ch. 6.11 - Why does a nonquasi-equilibrium compression...Ch. 6.11 - Prob. 63PCh. 6.11 - Prob. 64PCh. 6.11 - Prob. 65PCh. 6.11 - Why are engineers interested in reversible...Ch. 6.11 - What are the four processes that make up the...Ch. 6.11 - Prob. 68PCh. 6.11 - Prob. 69PCh. 6.11 - Prob. 70PCh. 6.11 - Somebody claims to have developed a new reversible...Ch. 6.11 - Is there any way to increase the efficiency of a...Ch. 6.11 - Consider two actual power plants operating with...Ch. 6.11 - Prob. 74PCh. 6.11 - Prob. 75PCh. 6.11 - 6–76 A Carnot heat engine receives 650 kJ of heat...Ch. 6.11 - A Carnot heat engine operates between a source at...Ch. 6.11 - A heat engine operates between a source at 477C...Ch. 6.11 - Prob. 80PCh. 6.11 - Prob. 81PCh. 6.11 - In tropical climates, the water near the surface...Ch. 6.11 - 6–83 A well-established way of power generation...Ch. 6.11 - Prob. 84PCh. 6.11 - Prob. 85PCh. 6.11 - How can we increase the COP of a Carnot...Ch. 6.11 - In an effort to conserve energy in a heat-engine...Ch. 6.11 - Prob. 88PCh. 6.11 - Prob. 89PCh. 6.11 - 6–90 During an experiment conducted in a room at...Ch. 6.11 - Prob. 91PCh. 6.11 - An air-conditioning system operating on the...Ch. 6.11 - Prob. 93PCh. 6.11 - Prob. 94PCh. 6.11 - Prob. 95PCh. 6.11 - Prob. 96PCh. 6.11 - 6–97 A heat pump is used to maintain a house at...Ch. 6.11 - Prob. 98PCh. 6.11 - Prob. 99PCh. 6.11 - Prob. 100PCh. 6.11 - A commercial refrigerator with refrigerant-134a as...Ch. 6.11 - Prob. 102PCh. 6.11 - A heat pump is to be used for heating a house in...Ch. 6.11 - A Carnot heat pump is to be used to heat a house...Ch. 6.11 - A Carnot heat engine receives heat from a...Ch. 6.11 - Prob. 106PCh. 6.11 - Prob. 107PCh. 6.11 - Prob. 108PCh. 6.11 - Derive an expression for the COP of a completely...Ch. 6.11 - Prob. 110PCh. 6.11 - Prob. 111PCh. 6.11 - Prob. 112PCh. 6.11 - Prob. 113PCh. 6.11 - Someone proposes that the entire...Ch. 6.11 - Prob. 115PCh. 6.11 - Prob. 116PCh. 6.11 - Prob. 117PCh. 6.11 - It is often stated that the refrigerator door...Ch. 6.11 - Prob. 119RPCh. 6.11 - A Carnot heat pump is used to heat and maintain a...Ch. 6.11 - Prob. 121RPCh. 6.11 - Prob. 122RPCh. 6.11 - A refrigeration system uses a water-cooled...Ch. 6.11 - A heat pump with a COP of 2.8 is used to heat an...Ch. 6.11 - Prob. 125RPCh. 6.11 - Consider a Carnot refrigeration cycle executed in...Ch. 6.11 - Consider two Carnot heat engines operating in...Ch. 6.11 - Prob. 129RPCh. 6.11 - A heat engine operates between two reservoirs at...Ch. 6.11 - Prob. 132RPCh. 6.11 - An old gas turbine has an efficiency of 21 percent...Ch. 6.11 - Prob. 134RPCh. 6.11 - Prob. 135RPCh. 6.11 - Prob. 136RPCh. 6.11 - Prob. 137RPCh. 6.11 - Prob. 138RPCh. 6.11 - Prob. 139RPCh. 6.11 - A refrigeration system is to cool bread loaves...Ch. 6.11 - The drinking water needs of a production facility...Ch. 6.11 - Prob. 143RPCh. 6.11 - Prob. 145RPCh. 6.11 - Prob. 146RPCh. 6.11 - Prob. 147RPCh. 6.11 - Prob. 148RPCh. 6.11 - A heat pump with refrigerant-134a as the working...Ch. 6.11 - Prob. 150RPCh. 6.11 - Prob. 151RPCh. 6.11 - Prob. 153RPCh. 6.11 - Prob. 154RPCh. 6.11 - Prob. 155RPCh. 6.11 - A 2.4-m-high 200-m2 house is maintained at 22C by...Ch. 6.11 - Prob. 157FEPCh. 6.11 - Prob. 158FEPCh. 6.11 - A heat pump is absorbing heat from the cold...Ch. 6.11 - A heat engine cycle is executed with steam in the...Ch. 6.11 - A heat engine receives heat from a source at 1000C...Ch. 6.11 - Prob. 162FEPCh. 6.11 - A refrigeration cycle is executed with R-134a...Ch. 6.11 - A heat pump with a COP of 3.2 is used to heat a...Ch. 6.11 - A heat engine cycle is executed with steam in the...Ch. 6.11 - An air-conditioning system operating on the...Ch. 6.11 - Prob. 167FEPCh. 6.11 - Two Carnot heat engines are operating in series...Ch. 6.11 - Consider a Carnot refrigerator and a Carnot heat...Ch. 6.11 - A typical new household refrigerator consumes...Ch. 6.11 - A window air conditioner that consumes 1 kW of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Since Lucas is an engineer familiar with thermodynamics. He decided to create his own heat engine at home to avoid paying for electricity. He created a small, makeshift heat engine for trial. The combustion of his fuel, diesel, reaches a temperature of 750°C, while waste heat is disposed to the atmosphere at 50°C.He, then connected a generator and a heat pump to the heat engine to check the amount of power being produced. Assume that the heat pump will be used to warm his room to 25°C, while the outside temperature is at 5°C. Lucas’ rooms loses 85,000 kJ/hr of heat. And, 25% of the heat engine’s power output goes to the heat pump. How much diesel (in kg) needs to be burned by the heat engine to maintain the temperature in Lucas’ room? Assume carnot heat engine and heat pump. If the natural gas has a heating value of 22,000 BTU/lb. *Round off all answers to four decimal places*arrow_forwardplease help answer all of this questio A b c d e f g please its thermodynamics assignment do allarrow_forwardIn a heat engine operating in a cycle between a source temperature of 606°C and a sink temperature of 20°C, what will be the least rate of heat rejection per kW net output of the engine? (a) 0.50 kW (b) 0.667 kW (c) 1.5 kW (d) 0.0341 kWarrow_forward
- Estimate the annual operating cost for a heat pump that delivers 30,000 BTU per hour of heat during winter and a similar rate of cooling during summer. Assume the heat pump operates 8 hours per day for 120 days in summer, and 12 hours per day for 120 days in winter. The Seasonal Energy Efficiency Ratio (SEER) for summer cooling is 16 BTU/Wh, and the Heating Season Performance Factor (HSPF) for winter heating is 12 BTU/Wh. The cost of electricity is $0.20/kWh.arrow_forwardA heat engine working with a thermal efficiency of 35% receives 2 kW of heat from a furnace. The waste heat rejected from the engine isarrow_forwardA heat engine cycle is executed with steam in the saturation dome. The pressure of steam is 1 MPa during heat addition, and 0.4 MPa during heat rejection. The highest possible efficiency of this heat engine is (a) 8.0% (b) 15.6% (c) 20.2% (d) 79.8% (e) 100%arrow_forward
- Please evaluate these claims from your thermodynamic perspectives: i. An inventor claims to have invented a heat engine that has thermal efficiency of 85% when operating between two heat reservoirs at 1200K and 300K. ii. An inventor claims to have developed a refrigerator that maintains the refrigerated space at -10°C while operating in a room where the temperature is 24°C and has a COP of 14.arrow_forwardA heat pump designer claims to have an air-source heat pump whose coefficient of performance is 1.8 when heating a building whose interior temperature is 300 K and when the atmospheric air surrounding the building is at 260 K. Is this claim valid?arrow_forwardA refrigeration system is to be used to constantly maintain a space at -12°C in an industrial cooling space. The estimated cooling rate of 96826 kJ/h when the outside temperature is 24°C. Determine the minimum power required to drive this refrigerator if analysis is based on Carnot cycle. Provide answer to 2 decimal places. Use 1°C=273 K if necessary.arrow_forward
- A heat engine is operating on a Carnot cycle and has a thermal efficiency of 78 percent. The waste heat from this engine is rejected to a nearby lake at 60°F at a rate of 800 Btu/min. Part A Determine the power output of the engine. UNITS IN (hp) Part B Determine The temperature of the source in (R) Make sure you use the correct units PART A in (hp) and Part B in (R)arrow_forwardheat engine operates between the maximum and minimum temperatures of 6710 C and 600 C respectively, with an efficiency of 50% of the appropriate Carnot efficiency. It drives a heat pump which uses river water at 4.40 C to heat a block of flats in which the temperature is to be maintained at 21.10 C. Assuming that a temperature difference of 11.10 C exists between the working fluid and the river water, on the one hand, and the required room temperature on the other, and assuming the heat pump to operate on the reversed Carnot cycle, but with a COP of 50% of the ideal COP, determine the heat input to the engine per unit heat output from the heat pump.arrow_forwardA heat engine receives half of its heat supply at 1000 K and half at 500 K while rejecting heat to a sink at 300 K. What is the maximum thermal efficiency of the heat engine?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY