Problems 21-30 refer to the table below of the six basic solutions to the e-system 2 x 1 + 3 x 2 + s 1 = 24 4 x 1 + 3 x 2 + s 2 = 36 x 1 x 2 s 1 s 2 A 0 0 24 36 B 0 8 0 12 C 0 12 − 12 0 D 12 0 0 − 12 E 9 0 6 0 F 6 4 0 0 Which of the basic solutions are not feasible? Explain.
Problems 21-30 refer to the table below of the six basic solutions to the e-system 2 x 1 + 3 x 2 + s 1 = 24 4 x 1 + 3 x 2 + s 2 = 36 x 1 x 2 s 1 s 2 A 0 0 24 36 B 0 8 0 12 C 0 12 − 12 0 D 12 0 0 − 12 E 9 0 6 0 F 6 4 0 0 Which of the basic solutions are not feasible? Explain.
Solution Summary: The author explains that if the basic solutions of the e-system have non-negative decision and slack variables, then it is termed a feasible solution.
Please solve the following Statistics and Probability Problem (show all work) :
The probability that a patient recovers from a rare blood disease is 0.4 and 10 people are known to havecontracted this disease. Let X denote the random variable which denotes the number of patient who survivefrom the disease.1. Plot the probability mass function (pmf) of X.2. Plot the cumulative distribution function (cdf) of X.3. What is the probability that at least 8 survive, i.e., P {X ≥ 8}?4. What is the probability that 3 to 8 survive, i.e., P {3 ≤ X ≤ 8}?
2) Compute the following anti-derivative.
√1x4 dx
Please solve the following Probability and Statistics problem (please double check solution and provide explanation):
A binary communication channel carries data as one of two types of signals denoted by 0 and 1. Owing tonoise, a transmitted 0 is sometimes received as a 1 and a transmitted 1 is sometimes received as a 0. For agiven channel, assume a probability of 0.94 that a transmitted 0 is correctly received as a 0 and a probability0.91 that a transmitted 1 is received as a 1. Further assume a probability of 0.45 of transmitting a 0. If asignal is sent, determine
1. Probability that a 1 is received2. Probability that a 0 is received3. Probability that a 1 was transmitted given that a 1 was received4. Probability that a 0 was transmitted given that a 0 was received5. Probability of an error
Chapter 6 Solutions
Finite Mathematics for Business, Economics, Life Sciences and Social Sciences
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.