Three boards are nailed together to form the beam shown, which is subjected to a vertical shear. Knowing that the spacing between the nails is s = 75 mm and that the allowable shearing force in each nail is 400 N, determine the allowable shear when w = 120 mm.
Fig. p6.89
The allowable shear in the beam.
Answer to Problem 89RP
The allowable shear in the beam is
Explanation of Solution
Given information:
The spacing between the nails is
The allowable shearing in each nail is
Calculation:
Sketch the cross section as shown in Figure 1.
Refer to Figure 1.
Calculate the moment of inertia (I) as shown below.
Here, b is the breadth of the section, h is the height of the section, A is the area of the beam, and
Calculate the moment of inertia for the whole symmetrical section as shown below.
Calculate the first moment of area (Q) as shown below.
Calculate the horizontal shear per unit length (q) as shown below.
Here, V is the vertical shear.
Substitute
Calculate the allowable shear
Substitute
Therefore, the allowable shear is
Want to see more full solutions like this?
Chapter 6 Solutions
Mechanics of Materials, 7th Edition
- Three 1 x 18-in. steel plates are bolted to four L6 x 6 x 1 angles to form a beam with the cross section shown. The bolts have a 78-in. diameter and are spaced longitudinally every 5 in. Knowing that the allowable average shearing stress in the bolts is 12 ksi, determine the largest permissible vertical shear in the beam. (Given: Ix= 6123 in4.)arrow_forwardFour L102 x 102 x 9.5 steel angle shapes and a 12 x 400-mm steel plate are bolted together to form a beam with the cross section shown. The bolts are of 22-mm diameter and are spaced longitudinally every 120 mm. Knowing that the beam is subjected to a vertical shear of 240 kN, determine the average shearing stress in each bolt.arrow_forward50 mm 100 mm 50 mm 150 mm 50 men Three boards, each 50 mm thick, are nailed together to form a beam that is subjected to a 1200-N vertical shear. Knowing that the allowable shearing force in each nail is 600 N, determine the largest permissible spactags between the nails.arrow_forward
- An extruded beam has the cross section shown and a uniform wall thickness of 0.20 in. Knowing that a given vertical shear V causes a maximum shearing stress τ= 9 ksi, determine the shearing stress at the four points indicated. assuming that the beam is subjected to a horizontal shear Varrow_forwardL/4 D L/2 LA B A timber beam AB of length L and rectangular cross section carries a uniformly distributed load w and is supported as shown. (a) Show that the ratio of the maximum values of the shearing and normal stresses in the beam is equal to 2h/L, where h and L are, respectively, the depth and the length of the beam. (b) Determine the depth h and the width b of the beam, knowing that L = 5 m, w = 8 kN/m, Tm = 1.08 MPa, and om = 12 MPa.arrow_forwardShow all work don’t skip steps I wanna know where everything comes from.arrow_forward
- The American Standard rolled-steel beam shown has been reinforced by attaching to it two 16 x 200-mm plates, using 18-mm-diameter bolts spaced longitudinally every 120 mm. Knowing that the average allowable shearing stress in the bolts is 90 MPa, determine the largest permissible vertical shearing force.arrow_forwardThree boards, each of 1.5 x3.5-in. rectangular cross section, are nailed together to form a beam that is subjected to a vertical shear of 250 lb. Knowing that the spacing between each pair of nails is 2.5 in., determine the shearing force in each nail.arrow_forwardnumber fivearrow_forward
- No. 5arrow_forward! Required information Three boards are nailed together to form a beam that is subjected to a vertical shear. Knowing that the allowable shearing force in each nail is 110 lb, determine the allowable vertical shear if the spacing s between the nails is 7 in. Assume a=2 in, b=4.5 in and c=6.5 in. a S $ 2 in. The centroidal moment of inertia is given as | (in 4)arrow_forwardThe built-up wooden beam shown is subjected to a vertical shear of 8 kN. Knowing that the nails are spaced longitudinally every 60 mm at A and every 25 mm at B, determine the shearing force in the nails (a) at A, (b) at B. (Given: Ix= 1.504 * 109 mm4)arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY