Space Shuttle launch The mass of the Space Shuttle at launch was about 2 .1 × 10 6 kg . Much of this mass was the fuel used to move the orbiter, which carried the astronauts and various items in the shuttle’s payload. The Space Shuttle generally traveled from 3 .2 × 10 5 m ( 200 mi ) to6 .2 × 10 5 m (385 mi) above Earth’s surface. The shuttle’s two solid fuel boosters (the cylinders on the sides of the shuttle) provided 71.4% of the thrust during liftoff and the first stage of ascent before being released from the shuttle 132 s after launch at 48,000 m above sea level. The boosters continued moving up in free fall to an altitude of approximately 70,000 m and then fell toward the ocean to be recovered 230 km from the launch site. The shuttle’s five engines together provided 3 .46 × 10 7 N of thrust during liftoff. What was the approximate impulse of the jet engine thrust exerted on the shuttle during the first 10 s of flight? a . 980 N ⋅ s downward b . 980 N ⋅ s upward c . 3 .4 x × 10 7 N ⋅ s upward d . 3 .4 × 10 8 N ⋅ s upward e . 3 .4 × 10 8 N ⋅ s downward
Space Shuttle launch The mass of the Space Shuttle at launch was about 2 .1 × 10 6 kg . Much of this mass was the fuel used to move the orbiter, which carried the astronauts and various items in the shuttle’s payload. The Space Shuttle generally traveled from 3 .2 × 10 5 m ( 200 mi ) to6 .2 × 10 5 m (385 mi) above Earth’s surface. The shuttle’s two solid fuel boosters (the cylinders on the sides of the shuttle) provided 71.4% of the thrust during liftoff and the first stage of ascent before being released from the shuttle 132 s after launch at 48,000 m above sea level. The boosters continued moving up in free fall to an altitude of approximately 70,000 m and then fell toward the ocean to be recovered 230 km from the launch site. The shuttle’s five engines together provided 3 .46 × 10 7 N of thrust during liftoff. What was the approximate impulse of the jet engine thrust exerted on the shuttle during the first 10 s of flight? a . 980 N ⋅ s downward b . 980 N ⋅ s upward c . 3 .4 x × 10 7 N ⋅ s upward d . 3 .4 × 10 8 N ⋅ s upward e . 3 .4 × 10 8 N ⋅ s downward
Space Shuttle launch The mass of the Space Shuttle at launch was about
2
.1
×
10
6
kg
. Much of this mass was the fuel used to move the orbiter, which carried the astronauts and various items in the shuttle’s payload. The Space Shuttle generally traveled from
3
.2
×
10
5
m
(
200 mi
)
to6
.2
×
10
5
m
(385 mi) above Earth’s surface. The shuttle’s two solid fuel boosters (the cylinders on the sides of the shuttle) provided 71.4% of the thrust during liftoff and the first stage of ascent before being released from the shuttle 132 s after launch at 48,000 m above sea level. The boosters continued moving up in free fall to an altitude of approximately 70,000 m and then fell toward the ocean to be recovered 230 km from the launch site. The shuttle’s five engines together provided
3
.46
×
10
7
N
of thrust during liftoff.
What was the approximate impulse of the jet engine thrust exerted on the shuttle during the first 10 s of flight?
a
. 980 N
⋅
s downward
b
. 980 N
⋅
s upward
c
. 3
.4 x
×
10
7
N
⋅
s upward
d
. 3
.4
×
10
8
N
⋅
s upward
e
. 3
.4
×
10
8
N
⋅
s downward
Statistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.
Lab-Based Section
Use the following information to answer the lab based scenario.
A student performed an experiment in an attempt to determine the index of refraction of glass.
The student used a laser and a protractor to measure a variety of angles of incidence and
refraction through a semi-circular glass prism. The design of the experiment and the student's
results are shown below.
Angle of
Incidence (°)
Angle of
Refraction (º)
20
11
30
19
40
26
50
31
60
36
70
38
2a) By hand (i.e., without using computer software), create a linear graph on graph paper
using the student's data. Note: You will have to manipulate the data in order to achieve a
linear function.
2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your
answer to the nearest hundredth.
Use the following information to answer the next two questions.
A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in
the diagram.
3a) Determine the critical angle of zircon.
35.0°
70°
55
55°
3b) Determine the angle of refraction when the laser beam leaves the prism.
Chapter 6 Solutions
College Physics: Explore And Apply, Volume 2 (2nd Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.