* BIO Potassium decay in body tissue Certain natural forms of potassium have nuclei that are radioactive. Each radioactive potassium nucleus decays to a slightly less massive daughter nucleus and a high-speed electron called a beta particle. If after the decay the daughter nucleus id moving at speed 200 m/s with respect to the decaying material, how fast is the electron (the beta particle) moving? Indicate any assumptions you made. The mass of the daughter nucleus is about 70,000 times greater than the mass of the beta particle.
* BIO Potassium decay in body tissue Certain natural forms of potassium have nuclei that are radioactive. Each radioactive potassium nucleus decays to a slightly less massive daughter nucleus and a high-speed electron called a beta particle. If after the decay the daughter nucleus id moving at speed 200 m/s with respect to the decaying material, how fast is the electron (the beta particle) moving? Indicate any assumptions you made. The mass of the daughter nucleus is about 70,000 times greater than the mass of the beta particle.
* BIO Potassium decay in body tissue Certain natural forms of potassium have nuclei that are radioactive. Each radioactive potassium nucleus decays to a slightly less massive daughter nucleus and a high-speed electron called a beta particle. If after the decay the daughter nucleus id moving at speed 200 m/s with respect to the decaying material, how fast is the electron (the beta particle) moving? Indicate any assumptions you made. The mass of the daughter nucleus is about 70,000 times greater than the mass of the beta particle.
Lab-Based Section
Use the following information to answer the lab based scenario.
A student performed an experiment in an attempt to determine the index of refraction of glass.
The student used a laser and a protractor to measure a variety of angles of incidence and
refraction through a semi-circular glass prism. The design of the experiment and the student's
results are shown below.
Angle of
Incidence (°)
Angle of
Refraction (º)
20
11
30
19
40
26
50
31
60
36
70
38
2a) By hand (i.e., without using computer software), create a linear graph on graph paper
using the student's data. Note: You will have to manipulate the data in order to achieve a
linear function.
2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your
answer to the nearest hundredth.
Use the following information to answer the next two questions.
A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in
the diagram.
3a) Determine the critical angle of zircon.
35.0°
70°
55
55°
3b) Determine the angle of refraction when the laser beam leaves the prism.
Use the following information to answer the next two questions.
A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in
the diagram.
3a) Determine the critical angle of zircon.
35.0°
70°
55
55°
3b) Determine the angle of refraction when the laser beam leaves the prism.
Chapter 6 Solutions
College Physics: Explore And Apply, Volume 2 (2nd Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.