Concept explainers
For the given set of tasks, do the following:
a. Develop the precedence diagram
b. Determine the minimum cycle time and then calculate the cycle time for a desired output of 500 units in a seven-hour day. Why might a manager use a cycle tune of 50 seconds?
c. Determine the minimum number of workstations for output of 500 units per day
d. Balance the line using the greatest positional weight heuristic. Break ties with the most following tasks heuristic. Use a cycle tune of 50 seconds.
e. Calculate the percentage idle time for the line.
a)
To draw: The precedence diagram.
Introduction:
Process selection:
It is the tactical choices made by a firm in picking the kind of production procedure to be followed in the process of production. The process is selected after reviewing many numbers of criteria and constraints.
Answer to Problem 7P
Precedence diagram:
Explanation of Solution
Given information:
Task | Task time (seconds) | Immediate predecessor |
A | 45 | Nil |
B | 11 | A |
C | 9 | B |
D | 50 | Nil |
E | 26 | D |
F | 11 | E |
G | 12 | C |
H | 10 | C |
I | 9 | F, G , H |
J | 10 | I |
Total | 193 |
Precedence diagram:
The precedence diagram is drawn circles and arrows. The tasks are represented in circles and weights for each task are represented outside the circle. The arrows are represented to show which task is preceding the other task and so on.
b)
To determine: The minimum cycle time and the cycle time for the desired output.
Introduction:
Process selection:
It is the tactical choices made by a firm in picking the kind of production procedure to be followed in the process of production. The process is selected after reviewing many numbers of criteria and constraints.
Answer to Problem 7P
Explanation of Solution
Given information:
Task | Task time (seconds) | Immediate predecessor |
A | 45 | Nil |
B | 11 | A |
C | 9 | B |
D | 50 | Nil |
E | 26 | D |
F | 11 | E |
G | 12 | C |
H | 10 | C |
I | 9 | F, G , H |
J | 10 | I |
Total | 193 |
Operating hours per day = 7
Sum of all task times = 193 seconds
Desired output per day = 500
Calculation of minimum cycle time:
The minimum cycle time is equal to the time of the longest task.
The minimum cycle time is 50 seconds / unit.
Calculation of cycle time for the desired output:
The cycle time is calculated by dividing the operating time per day in seconds by the desired output per day.
The cycle time for the desired output is 50.4 seconds / unit.
The manager might use a cycle time of 50 seconds because it is closer to the calculated time. Also the task times are integers giving it a good chance to balance the line effectively.
c)
To determine: The minimum number of workstations for the desired output.
Introduction:
Process selection:
It is the tactical choices made by a firm in picking the kind of production procedure to be followed in the process of production. The process is selected after reviewing many numbers of criteria and constraints.
Answer to Problem 7P
Explanation of Solution
Given information:
Task | Task time (seconds) | Immediate predecessor |
A | 45 | Nil |
B | 11 | A |
C | 9 | B |
D | 50 | Nil |
E | 26 | D |
F | 11 | E |
G | 12 | C |
H | 10 | C |
I | 9 | F, G , H |
J | 10 | I |
Total | 193 |
Operating hours per day = 7
Sum of all task times = 193 seconds
Desired output per day = 500
Calculation of minimum number of workstations:
The minimum number of workstations is calculated by dividing the sum of all task times with the calculated cycle time.
The minimum number of workstations for the desired output is 4 workstations.
d)
To assign: Tasks on the basis of greatest positional weight.
Introduction:
Process selection:
It is the tactical choices made by a firm in picking the kind of production procedure to be followed in the process of production. The process is selected after reviewing many numbers of criteria and constraints.
Explanation of Solution
Given information:
Task | Duration (minutes) | Immediate (Predecessor) |
a | 0.1 | Nil |
b | 0.2 | a |
c | 0.9 | b |
d | 0.6 | c |
e | 0.1 | Nil |
f | 0.2 | d, e |
g | 0.4 | f |
h | 0.1 | g |
i | 0.2 | h |
j | 0.7 | i |
k | 0.3 | j |
l | 0.2 | k |
Cycle time = 50 seconds
The number of following tasks, calculation of positional weight for each task is shown below.
Task | Following tasks | Number of following tasks | Calculation of positional weight | Positional weight |
A | B, C, G, H, I, J | 6 | 45 + 11 + 9 + 12 + 10 + 9 + 10 | 106 |
B | C, G, H, I, J | 5 | 11 + 9 + 12 + 10 + 9 + 10 | 61 |
C | G, H, I, J | 4 | 9 + 12 + 10 + 9 + 10 | 50 |
D | E, F, I, J | 4 | 50 + 26 + 11 + 9 + 10 | 106 |
E | F, I, J | 3 | 26 + 11 + 9 + 10 | 56 |
F | I, J | 2 | 11 + 9 + 10 | 30 |
G | I, J | 2 | 12 + 9 + 10 | 31 |
H | I, J | 2 | 10 + 9 + 10 | 29 |
I | J | 1 | 9 + 10 | 19 |
J | Nil | 0 | 10 | 10 |
Assigning tasks to workstations:
Workstation number | Eligible task | Assigned task | Task time | Unassigned cycle time | Reason |
50 | |||||
1 | A, D | A | 45 | 5 | Task 'A' has more following tasks |
B, D | None | 5 (Idle time) | The task time is greater than the unassigned cycle time. | ||
50 | |||||
2 | B, D | D | 50 | 0 | Task 'D' has the highest positional weight |
50 | |||||
3 | B, E | B | 11 | 39 | Task 'B' has the highest positional weight |
C, E | E | 26 | 13 | Task 'E' has the highest positional weight | |
C, F | C | 9 | 4 | Task 'C' has the highest positional weight | |
F, G, H | None | 4 (Idle time) | The task time is greater than the unassigned cycle time. | ||
50 | |||||
4 | F, G, H | G | 12 | 38 | Task 'G' has the highest positional weight |
F, H | F | 11 | 27 | Task 'F' has the highest positional weight | |
H | H | 10 | 17 | Task 'H' is the only eligible task available | |
I | I | 9 | 8 | Task 'I' is the only eligible task available | |
J | None | 8 (Idle time) | The task time is greater than the unassigned cycle time. | ||
50 | |||||
5 | J | J | 10 | 40 | Task 'J' is the only task remaining |
40 (Idle time) | All tasks completed |
Overview of tasks assignment:
Workstation | Assigned tasks | Total cycle time used | Idle time |
1 | A | 45 | 5 |
2 | D | 50 | 0 |
3 | B, E, C | 46 | 4 |
4 | G, F, H, I | 42 | 8 |
5 | J | 10 | 40 |
e)
To determine: The percentage of idle time.
Introduction:
Process selection:
It is the tactical choices made by a firm in picking the kind of production procedure to be followed in the process of production. The process is selected after reviewing many numbers of criteria and constraints.
Answer to Problem 7P
Explanation of Solution
Formula to calculate percentage of idle time:
Calculation of percentage of idle time:
The percentage of idle time is 22.80%.
Want to see more full solutions like this?
Chapter 6 Solutions
Loose-leaf for Operations Management (The Mcgraw-hill Series in Operations and Decision Sciences)
- 1) View the video Service Processing at BuyCostumes (10.41 minutes, Ctrl+Click on the link); what are your key takeaways (tie to one or more of the topics discussed in Chapter 3) after watching this video. (viddler.com/embed/a6b7054c) Note: As a rough guideline, please try to keep the written submission to one or two paragraphs. 2) Orkhon Foods makes hand-held pies (among other products). The firm’s weekly sales of hand-held pies over the past seven weeks are given in the table. The firm’s operations manager, Amarjargal, wants to forecast sales for week 8. Weeks Sales of hand-held pies(000s) 1 19 2 18 3 17 4 20 5 18 6 22 7 20 Forecast the week 8 sales using the following approaches: a) Naïve approach b) 5-month moving average c) 3-month weighted moving average using the following weights: 0.50 for week 7, 0.30 for week 6, and 0.20 for week 5. d) Exponential smoothing using a smoothing constant of 0.30, assume a week 2…arrow_forwardWhat area of emotional intelligence refers to the ability to manage your emotions, particularly in stressful situations, and maintain a positive outlook despite setbacks? relationship management self awareness social awareness self managementarrow_forwardWhat area of emotional intelligence refers to the ability to manage your emotions, particularly in stressful situations, and maintain a positive outlook despite setbacks? relationship management self awareness social awareness self managementarrow_forward
- This area of emotional intelligence describes your ability to not only understand your strengths and weaknesses but to recognize your emotions and their effect on you and your team’s performance self management self awareness relationship management social awarenessarrow_forwardEmotional intelligence is defined as the ability to understand and manage your emotions, as well as recognize and influence the emotions of those around you. True Falsearrow_forwardAt the Ford automobile Highland plant, assume the one-millionth vehicle was produced in 1916 at a cost of $8084 (in 2013 US$), by how much did the Ford company reduce his cost with each doubling of cumulative output from 1916 to 1927?arrow_forward
- At the Ford automobile Highland plant,in 1913, how long did the average worker stay with the plant and what was the average tenure of a worker?arrow_forwardCommunity Federal Bank in Dothan, Alabama, recently increased its fees to customers who use employees as tellers. Management is interested in whether its new tee policy has increased the number of customers now using its automatic teller machines to that point that more machines are required. The following table provides the number of automatic teller transactions by week. Use trend projection with regression to forecast usage for weeks 13-16.arrow_forwardDavison Electronics manufactures three LED television monitors, identified as Model A, Model B, and Model C. Davison Electronics four manufacturing plants. Each model has its lowest possible production cost when produced at Plant 1. However, Plant 1 does not have the capacity to handle the total production of all three models. As a result, at least some of the production must be routed to the other manufacturing plants. The following table shows the minimum production requirements for next month, the plant capacities in units per month, and the production cost per unit at each plant: Model Production Cost per Unit Minimum Production Requirements Plant 1 Plant 2 Plant 3 Plant 4 A $25 $28 $37 $34 48,000 B $26 $35 $36 $41 75,000 C $20 $31 $26 $23 60,000 Production Capacity 65,000 50,000 32,000 43,000 Davison’s objective is to determine the cost-minimizing production planarrow_forward
- Anecdotally, entrepreneurs frequently encounter two critical dilemmas in managing human resources: the timing of hiring and the decision regarding hiring a generalist versus a specialist for their growing venture. Deciding when to expand a team is crucial, as premature hiring (i.e., hiring too soon) can strain resources, while delayed hiring (i.e., hiring too late) might hinder growth opportunities. Moreover, the choice between hiring a generalist or a specialist depends on the specific needs and stage of the venture, with each option presenting distinct advantages and challenges. To address these issues, a management scholar seeks to identify the factors shaping the hiring cycle throughout the entrepreneurial journey and to understand the criteria for choosing between generalists and specialists at various stages of a venture. The scholar has assembled a sample of 20 experienced South African entrepreneurs who have encountered both failure and success in the financial technology…arrow_forward3. [25 pts.] Four projects are available for investment. The projects require the cash flows and yield the net present values (NPV) (in millions) shown in the following table. Project id. 1 2 Cash outflow at time 0 (million Lira) 8 8 NPV (million Lira) 12 11 3 4 6 5 8 6 If 20 million Lira is available for investment at time 0, find the investment plan that maximizes NPV. All investments are required to be 0 or 1 (fractional investment values are not permitted). a. Formulate the mathematical model. (Write the decision variables, objective function and the constraints.) [10 pts.] b. Find the optimal solution by using Branch and Bound method (Draw the branch and bound tree clearly, write also lower bounds(LB)) (Left branches x=0, right branches x =1) [15 pts.].arrow_forwardexamine the production concept and operations management, what are the key steps required to achieve success? Be specific in your response.arrow_forward
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
- Purchasing and Supply Chain ManagementOperations ManagementISBN:9781285869681Author:Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. PattersonPublisher:Cengage LearningManagement, Loose-Leaf VersionManagementISBN:9781305969308Author:Richard L. DaftPublisher:South-Western College PubMarketingMarketingISBN:9780357033791Author:Pride, William MPublisher:South Western Educational Publishing