Fundamentals Of Thermal-fluid Sciences In Si Units
5th Edition
ISBN: 9789814720953
Author: Yunus Cengel, Robert Turner, John Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 78P
To determine
The rate of condensation of the steam in the condenser.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A gas mixture with a molar analysis of 40% CH4 (methane) and 60% air enters a control volume operating at steady state at location 1
with a mass flow rate of 5 kg/min, as shown in the figure below. Air enters as a separate stream at 2 and dilutes the mixture. A single
stream exits with a mole fraction of methane of 5%. Assume air has a molar analysis of 21% O2 and 79% N2.
(CH4, Air)
m₁ =
= 5 kg/min
Air
(21% O2, 79% N₂)
3
+
(5% CH4, 95% Air)
A. Calculate the cutting time if the length of cut is 24 in., the feed rate is 0.030 ipr, and the cutting speed is 80 fpm. The allowance is 0.5 in and the diameter is 8 in.
B. Calculate the metal removal rate for machining at speed of 80 fpm, feed of 0.030 ipr, at a depth of 0.625 in. Use data from the previous problem.
Consider 0.65 kg of N2 at 300 K, 1 bar contained in a rigid tank connected by a valve to another rigid tank holding 0.3 kg of CO2 at 300
K, 1 bar. The valve is opened and gases are allowed to mix, achieving an equilibrium state at 290 K.
Determine:
(a) the volume of each tank, in m³.
(b) the final pressure, in bar.
(c) the magnitude of the heat transfer to or from the gases during the process, in kJ.
(d) the entropy change of each gas and of the overall system, in kJ/K.
Chapter 6 Solutions
Fundamentals Of Thermal-fluid Sciences In Si Units
Ch. 6 - Prob. 1PCh. 6 - Define mass and volume flow rates. How are they...Ch. 6 - Does the amount of mass entering a control volume...Ch. 6 - Consider a device with one inlet and one outlet....Ch. 6 - The ventilating fan of the bathroom of a building...Ch. 6 - Air whose density is 0.078 lbm/ft3 enters the duct...Ch. 6 - Air enters a 28-cm diameter pipe steadily at 200...Ch. 6 - A steady-flow compressor is used to compress...Ch. 6 - Prob. 9PCh. 6 - A desktop computer is to be cooled by a fan whose...
Ch. 6 - Prob. 11PCh. 6 - Prob. 12PCh. 6 - Prob. 13PCh. 6 - Prob. 14PCh. 6 - Prob. 15PCh. 6 - Prob. 16PCh. 6 - A house is maintained at 1 atm and 24°C, and warm...Ch. 6 - Prob. 18PCh. 6 - Prob. 19PCh. 6 - Prob. 20PCh. 6 - Prob. 21PCh. 6 - The kinetic energy of a fluid increases as it is...Ch. 6 - Prob. 23PCh. 6 - Air enters a nozzle steadily at 50 psia, 140°F,...Ch. 6 - Prob. 25PCh. 6 - Prob. 26PCh. 6 - Air at 600 kPa and 500 K enters an adiabatic...Ch. 6 - Prob. 28PCh. 6 - Prob. 29PCh. 6 - Air at 13 psia and 65°F enters an adiabatic...Ch. 6 - Prob. 31PCh. 6 - Prob. 32PCh. 6 - Prob. 33PCh. 6 - Steam at 4 MPa and 400°C enters a nozzle steadily...Ch. 6 - Prob. 35PCh. 6 - Prob. 36PCh. 6 - Prob. 37PCh. 6 - Prob. 38PCh. 6 - Prob. 39PCh. 6 - Prob. 40PCh. 6 - Prob. 41PCh. 6 - Prob. 42PCh. 6 - Prob. 43PCh. 6 - Helium is to be compressed from 105 kPa and 295 K...Ch. 6 - Carbon dioxide enters an adiabatic compressor at...Ch. 6 - Air is compressed from 14.7 psia and 60°F to a...Ch. 6 - Prob. 47PCh. 6 - An adiabatic gas turbine expands air at 1300 kPa...Ch. 6 - Steam flows steadily into a turbine with a mass...Ch. 6 - Prob. 50PCh. 6 - Prob. 51PCh. 6 - Prob. 52PCh. 6 - Prob. 53PCh. 6 - Prob. 54PCh. 6 - Refrigerant-134a is throttled from the saturated...Ch. 6 - Prob. 56PCh. 6 - Prob. 57PCh. 6 - Prob. 58PCh. 6 - Prob. 59PCh. 6 - Prob. 60PCh. 6 - Prob. 61PCh. 6 - Prob. 62PCh. 6 - Prob. 63PCh. 6 - Prob. 64PCh. 6 - Prob. 65PCh. 6 - Prob. 66PCh. 6 - Prob. 67PCh. 6 - Prob. 68PCh. 6 - Prob. 69PCh. 6 - Prob. 70PCh. 6 - A thin-walled double-pipe counter-flow heat...Ch. 6 - Prob. 72PCh. 6 - Prob. 73PCh. 6 - Prob. 74PCh. 6 - Prob. 75PCh. 6 - Prob. 77PCh. 6 - Prob. 78PCh. 6 - Prob. 79PCh. 6 - Prob. 80PCh. 6 - Prob. 81PCh. 6 - Prob. 82PCh. 6 - Prob. 83PCh. 6 - Prob. 84PCh. 6 - Prob. 85PCh. 6 - The components of an electronic system dissipating...Ch. 6 - Prob. 87PCh. 6 - Prob. 88PCh. 6 - Prob. 89PCh. 6 - Prob. 90PCh. 6 - Prob. 91PCh. 6 - Prob. 92PCh. 6 - Prob. 93PCh. 6 - A house has an electric heating system that...Ch. 6 - Prob. 95PCh. 6 - Refrigerant-134a enters the condenser of a...Ch. 6 - Prob. 97PCh. 6 - Prob. 98PCh. 6 - Prob. 99PCh. 6 - Prob. 100PCh. 6 - Air enters the duct of an air-conditioning system...Ch. 6 - Prob. 102PCh. 6 - A rigid, insulated tank that is initially...Ch. 6 - Prob. 105PCh. 6 - Prob. 106PCh. 6 - Prob. 107PCh. 6 - Prob. 108PCh. 6 - Prob. 109PCh. 6 - An air-conditioning system is to be filled from a...Ch. 6 - Prob. 111PCh. 6 - A 0.06-m3 rigid tank initially contains...Ch. 6 - A 0.3-m3 rigid tank is filled with saturated...Ch. 6 - Prob. 114PCh. 6 - A 0.3-m3 rigid tank initially contains...Ch. 6 - Prob. 116PCh. 6 - Prob. 117PCh. 6 - An insulated 40-ft3 rigid tank contains air at 50...Ch. 6 - A vertical piston–cylinder device initially...Ch. 6 - A vertical piston–cylinder device initially...Ch. 6 - The air in a 6-m × 5-m × 4-m hospital room is to...Ch. 6 - Prob. 124RQCh. 6 - Prob. 125RQCh. 6 - Prob. 126RQCh. 6 - Prob. 127RQCh. 6 - Prob. 128RQCh. 6 - Prob. 129RQCh. 6 - Prob. 130RQCh. 6 - Prob. 131RQCh. 6 - Prob. 132RQCh. 6 - Steam enters a nozzle with a low velocity at 150°C...Ch. 6 - Prob. 134RQCh. 6 - Prob. 135RQCh. 6 - Prob. 136RQCh. 6 - In large steam power plants, the feedwater is...Ch. 6 - Prob. 138RQCh. 6 - Prob. 139RQCh. 6 - Prob. 140RQCh. 6 - Prob. 141RQCh. 6 - Prob. 142RQCh. 6 - Prob. 143RQCh. 6 - Prob. 144RQCh. 6 - Prob. 145RQCh. 6 - Prob. 146RQCh. 6 - Repeat Prob. 6–146 for a copper wire ( = 8950...Ch. 6 - Prob. 148RQCh. 6 - Prob. 149RQCh. 6 - Prob. 150RQCh. 6 - Prob. 151RQCh. 6 - Prob. 152RQCh. 6 - Prob. 153RQCh. 6 - An adiabatic air compressor is to be powered by a...Ch. 6 - Prob. 156RQCh. 6 - Prob. 157RQCh. 6 - Prob. 158RQCh. 6 - Prob. 159RQCh. 6 - Prob. 160RQCh. 6 - Prob. 161RQCh. 6 - Prob. 162RQCh. 6 - Prob. 163RQCh. 6 - Prob. 164RQCh. 6 - Prob. 166RQCh. 6 - Prob. 167RQCh. 6 - Prob. 168RQCh. 6 - Prob. 169RQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A gas mixture with a molar analysis of 40% CH4 (methane) and 60% air enters a control volume operating at steady state at location 1 with a mass flow rate of 5 kg/min, as shown in the figure below. Air enters as a separate stream at 2 and dilutes the mixture. A single stream exits with a mole fraction of methane of 5%. Assume air has a molar analysis of 21% O2 and 79% N2. (CH4, Air) m₁ = = 5 kg/min Air (21% O2, 79% N₂) 3 + (5% CH4, 95% Air)arrow_forwardA gas mixture with a molar analysis of 40% CH4 (methane) and 60% air enters a control volume operating at steady state at location 1 with a mass flow rate of 5 kg/min, as shown in the figure below. Air enters as a separate stream at 2 and dilutes the mixture. A single stream exits with a mole fraction of methane of 5%. Assume air has a molar analysis of 21% O2 and 79% N2. (CH4, Air) m₁ = = 5 kg/min Air (21% O2, 79% N₂) 3 + (5% CH4, 95% Air)arrow_forwardArgon (Ar), at T₁ = 350 K, 1 bar with a mass flow rate of m₁ 3 kg/s enters the insulated mixing chamber shown in the figure below and mixes with carbon dioxide (CO2) entering as a separate stream at 575 K, 1 bar with a mass flow rate of 0.5 kg/s. The mixture exits at 1 bar. Assume ideal gas behavior with k = 1.67 for Ar and k = 1.25 for CO2. Argon (Ar) P₁ = 1 bar mT For steady-state operation, determine: (a) the molar analysis of the exiting mixture. (b) the temperature of the exiting mixture, in K. (c) the rate of entropy production, in kW/K. Insulation 3 + Mixture exiting P3 = 1 bar 2+ Carbon dioxide (CO2) T₂ = 575 K P2 = 1 bar m2 = 0.5 kg/sarrow_forward
- Consider 0.65 kg of N2 at 300 K, 1 bar contained in a rigid tank connected by a valve to another rigid tank holding 0.3 kg of CO2 at 300 K, 1 bar. The valve is opened and gases are allowed to mix, achieving an equilibrium state at 290 K. Determine: (a) the volume of each tank, in m³. (b) the final pressure, in bar. (c) the magnitude of the heat transfer to or from the gases during the process, in kJ. (d) the entropy change of each gas and of the overall system, in kJ/K.arrow_forward1. For the following two-DOF system, determine the first natural frequency using equation method: Raylieghs m2=2 kg k₂= 80 N/m m₁ =1 kg www k₁= 40 N/marrow_forward(◉ Home - my.uah.edu Homework#5 MasteringEngineering Mastering X + 8 https://session.engineering-mastering.pearson.com/myct/itemView?assignmentProblemID=18992148&offset=nextarrow_forwardCHAPTER 14: Kinetics of a Particle: Conservation of Energy Qu.4 The spring has a stiffness k = 200 N/m and an unstretched length of 0.5 m. If it is attached to the 3- kg smooth collar and the collar is released from rest at A, determine the speed of the collar when it reaches B. Neglect the size of the collar.please show all work step by steparrow_forwardQu. 2 The 100-kg crate is subjected to the action of two forces. If it is originally at rest, determine the distance it slides in order to attain a speed of 6 m/s. The coefficient of kinetic friction between the crate and the surface is uk = 0.2. i need to show all work step by step problemsarrow_forward(◉ Home - my.uah.edu Homework#5 MasteringEngineering Mastering X + 8 https://session.engineering-mastering.pearson.com/myct/itemView?offset=next&assignmentProblemID=18992146arrow_forwardRecommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill EducationControl Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEYThe Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY