Fundamentals Of Thermal-fluid Sciences In Si Units
5th Edition
ISBN: 9789814720953
Author: Yunus Cengel, Robert Turner, John Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 109P
To determine
The temperature and mass of the air in the tank.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Meh
Battery operated train
Coll CD Af Pair
160,000kg 0.0005 0.15 5m² 1.2kg/m³
19
7et nong
0.98 0.9 0.88
Tesla Prated
Tesla Trated Ywheel ng Jaxle.
270kW
440NM
0.45m 20
2
8.5kgm²
Consider a drive cycle of a 500km trip with 3 stops in
the middle. Other than the acceleration and deceleration
associated with the three stops, the tran maintains.
constant cruise speed velocity of 324 km/hr. The
tran will fast charge at each stop for 15 min at a
rate Peharge = 350 kW
(ผม
τ
(MN
15MIN
Stop
w charging
(350kW
GMIJ
restored during 15
minutes of fast charging at
Calculate the battery energy Pcharge = 350kW
Calculate the net energy gain per stop
t
64
Determice the total battery energy required Ebat
to complete the 500km trip with 3 stops.
etc
DO NOT COPY SOLUTION
The differential equation of a cruise control system is provided by the following equation:
Find the closed loop transfer function with respect to the reference velocity (vr) .
a. Find the poles of the closed loop transfer function for different values of K. How does the poles move as you change K?
b. Find the step response for different values of K and plot in MATLAB. What can you observe?
c. For the given transfer function, find tp, ts, tr, Mp . Plot the resulting step response. G(s) = 40/(s^2 + 4s + 40)
Aswatan gas occupies a space of 0.3 millike cube at a pressure of 2 bar and temperature of 77 degree Celsius it is indicate at constant volume at pressure of 7 parts determine temperature at the end of process mass of a gas changing internal energy change in enthalpy during the process assume CP is equal to 10 1.005 CV is equal to 0.712 is equal to 287
Chapter 6 Solutions
Fundamentals Of Thermal-fluid Sciences In Si Units
Ch. 6 - Prob. 1PCh. 6 - Define mass and volume flow rates. How are they...Ch. 6 - Does the amount of mass entering a control volume...Ch. 6 - Consider a device with one inlet and one outlet....Ch. 6 - The ventilating fan of the bathroom of a building...Ch. 6 - Air whose density is 0.078 lbm/ft3 enters the duct...Ch. 6 - Air enters a 28-cm diameter pipe steadily at 200...Ch. 6 - A steady-flow compressor is used to compress...Ch. 6 - Prob. 9PCh. 6 - A desktop computer is to be cooled by a fan whose...
Ch. 6 - Prob. 11PCh. 6 - Prob. 12PCh. 6 - Prob. 13PCh. 6 - Prob. 14PCh. 6 - Prob. 15PCh. 6 - Prob. 16PCh. 6 - A house is maintained at 1 atm and 24°C, and warm...Ch. 6 - Prob. 18PCh. 6 - Prob. 19PCh. 6 - Prob. 20PCh. 6 - Prob. 21PCh. 6 - The kinetic energy of a fluid increases as it is...Ch. 6 - Prob. 23PCh. 6 - Air enters a nozzle steadily at 50 psia, 140°F,...Ch. 6 - Prob. 25PCh. 6 - Prob. 26PCh. 6 - Air at 600 kPa and 500 K enters an adiabatic...Ch. 6 - Prob. 28PCh. 6 - Prob. 29PCh. 6 - Air at 13 psia and 65°F enters an adiabatic...Ch. 6 - Prob. 31PCh. 6 - Prob. 32PCh. 6 - Prob. 33PCh. 6 - Steam at 4 MPa and 400°C enters a nozzle steadily...Ch. 6 - Prob. 35PCh. 6 - Prob. 36PCh. 6 - Prob. 37PCh. 6 - Prob. 38PCh. 6 - Prob. 39PCh. 6 - Prob. 40PCh. 6 - Prob. 41PCh. 6 - Prob. 42PCh. 6 - Prob. 43PCh. 6 - Helium is to be compressed from 105 kPa and 295 K...Ch. 6 - Carbon dioxide enters an adiabatic compressor at...Ch. 6 - Air is compressed from 14.7 psia and 60°F to a...Ch. 6 - Prob. 47PCh. 6 - An adiabatic gas turbine expands air at 1300 kPa...Ch. 6 - Steam flows steadily into a turbine with a mass...Ch. 6 - Prob. 50PCh. 6 - Prob. 51PCh. 6 - Prob. 52PCh. 6 - Prob. 53PCh. 6 - Prob. 54PCh. 6 - Refrigerant-134a is throttled from the saturated...Ch. 6 - Prob. 56PCh. 6 - Prob. 57PCh. 6 - Prob. 58PCh. 6 - Prob. 59PCh. 6 - Prob. 60PCh. 6 - Prob. 61PCh. 6 - Prob. 62PCh. 6 - Prob. 63PCh. 6 - Prob. 64PCh. 6 - Prob. 65PCh. 6 - Prob. 66PCh. 6 - Prob. 67PCh. 6 - Prob. 68PCh. 6 - Prob. 69PCh. 6 - Prob. 70PCh. 6 - A thin-walled double-pipe counter-flow heat...Ch. 6 - Prob. 72PCh. 6 - Prob. 73PCh. 6 - Prob. 74PCh. 6 - Prob. 75PCh. 6 - Prob. 77PCh. 6 - Prob. 78PCh. 6 - Prob. 79PCh. 6 - Prob. 80PCh. 6 - Prob. 81PCh. 6 - Prob. 82PCh. 6 - Prob. 83PCh. 6 - Prob. 84PCh. 6 - Prob. 85PCh. 6 - The components of an electronic system dissipating...Ch. 6 - Prob. 87PCh. 6 - Prob. 88PCh. 6 - Prob. 89PCh. 6 - Prob. 90PCh. 6 - Prob. 91PCh. 6 - Prob. 92PCh. 6 - Prob. 93PCh. 6 - A house has an electric heating system that...Ch. 6 - Prob. 95PCh. 6 - Refrigerant-134a enters the condenser of a...Ch. 6 - Prob. 97PCh. 6 - Prob. 98PCh. 6 - Prob. 99PCh. 6 - Prob. 100PCh. 6 - Air enters the duct of an air-conditioning system...Ch. 6 - Prob. 102PCh. 6 - A rigid, insulated tank that is initially...Ch. 6 - Prob. 105PCh. 6 - Prob. 106PCh. 6 - Prob. 107PCh. 6 - Prob. 108PCh. 6 - Prob. 109PCh. 6 - An air-conditioning system is to be filled from a...Ch. 6 - Prob. 111PCh. 6 - A 0.06-m3 rigid tank initially contains...Ch. 6 - A 0.3-m3 rigid tank is filled with saturated...Ch. 6 - Prob. 114PCh. 6 - A 0.3-m3 rigid tank initially contains...Ch. 6 - Prob. 116PCh. 6 - Prob. 117PCh. 6 - An insulated 40-ft3 rigid tank contains air at 50...Ch. 6 - A vertical piston–cylinder device initially...Ch. 6 - A vertical piston–cylinder device initially...Ch. 6 - The air in a 6-m × 5-m × 4-m hospital room is to...Ch. 6 - Prob. 124RQCh. 6 - Prob. 125RQCh. 6 - Prob. 126RQCh. 6 - Prob. 127RQCh. 6 - Prob. 128RQCh. 6 - Prob. 129RQCh. 6 - Prob. 130RQCh. 6 - Prob. 131RQCh. 6 - Prob. 132RQCh. 6 - Steam enters a nozzle with a low velocity at 150°C...Ch. 6 - Prob. 134RQCh. 6 - Prob. 135RQCh. 6 - Prob. 136RQCh. 6 - In large steam power plants, the feedwater is...Ch. 6 - Prob. 138RQCh. 6 - Prob. 139RQCh. 6 - Prob. 140RQCh. 6 - Prob. 141RQCh. 6 - Prob. 142RQCh. 6 - Prob. 143RQCh. 6 - Prob. 144RQCh. 6 - Prob. 145RQCh. 6 - Prob. 146RQCh. 6 - Repeat Prob. 6–146 for a copper wire ( = 8950...Ch. 6 - Prob. 148RQCh. 6 - Prob. 149RQCh. 6 - Prob. 150RQCh. 6 - Prob. 151RQCh. 6 - Prob. 152RQCh. 6 - Prob. 153RQCh. 6 - An adiabatic air compressor is to be powered by a...Ch. 6 - Prob. 156RQCh. 6 - Prob. 157RQCh. 6 - Prob. 158RQCh. 6 - Prob. 159RQCh. 6 - Prob. 160RQCh. 6 - Prob. 161RQCh. 6 - Prob. 162RQCh. 6 - Prob. 163RQCh. 6 - Prob. 164RQCh. 6 - Prob. 166RQCh. 6 - Prob. 167RQCh. 6 - Prob. 168RQCh. 6 - Prob. 169RQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- AUTO CONTROLDNO COPIED ANSWERS, SHOW FULL SOLUTION The differential equation of a DC motor can be described by the following equation Find the transfer function between the applied voltage ( Va)and the motor speed (thetadot m). What is the steady state speed of the motor after a voltage (Va = 10V) has been applied. Find the transfer function between the applied voltage (Va) and the shaft angle (thetadot m) .arrow_forwardAuto Controls DONT COPY ANSWERS Perform the partial fraction expansion of the following transfer function and find the impulse response: G(s) = (s/2 + 5/3) / (s^2 + 4s + 6) G(s) =( 6s^2 + 50) / (s+3)(s^2 +4)arrow_forwardDerive the Laplace transform of the following functions. Use the definition of Laplace transform. f(t)=sin4t and f(t)=cos2t Auto Controlsarrow_forward
- helparrow_forwardany help i dont understandarrow_forwardBattery operated train Mueh Groll CD Af Pair 160,000 kg 0.0005 0.15 19 5m² 1.2kg/m³ 0.98 0.9 Tet neng 0.88 Tesla Prated Tesla Trated Ywheel ng Joyle 2 270 kW 440NM 0,45m 20 8.5kg m Consider a drive cycle of a 500km trip with 3 stops in the middle. Other than the acceleration and deceleration associated with the three stops, the tran maintains. constant cruise speed velocity of 324 km/hr. The tran will fast charge at each stop for 15 min at a rate Peharge = 350 kW Εμ (MN 15MIN Stop w charging (350kW) GMIJ t 6MM 6AW 1) calculate the battery power required to mantain. constant velocity of 324km/hr 2) determine the battery energy, energy required to constant velocity portion of this drive. Cover the 3) calculate the battery energy required to accelerate the train to 324/04/hr. 4) calculate the battery energy that is either fost in deceleration or recovered due to regenerative breaking etcarrow_forward
- A 22-lb block B rests as shown on a 28-lb bracket A. The coefficients of friction are μs=0.30μs=0.30 and μk=0.25μk=0.25 between block B and bracket A, and there is no friction in the pulley or between the bracket and the horizontal surface. solved in a previous part. max weight of block C if block B is not to slide on bracket A is 5.045 lbs. Please solve for the acceleration of each Blockarrow_forwardTest 1 .DOCX * A File Edit View Tools Help INDUSTRIAL ENGINEERING PROGRAMME IMB 411-INDUSTRIAL LOGISTICS TEST 1- SEPTEMBER 12, 2012 Instructions: Answer all questions. Time allowed is 1.5 hours. Identify your script with your student number ONLY (Do not write your name). 1. Define the following terms (i) Logistics management (ii) Supply chain management (iii) Vertical integration in a supply chain (3 Marks) (3 Marks) (3 Marks) 2. (a) Using examples of your choice, briefly discuss the following levels of customer service (1) Pre-transaction elements (ii) Transaction elements (4 Marks) (4 Marks) (iii) Post-transaction elements (4 Marks) (b) "The challenge facing Dumelang Enterprise (Pty) Ltd is to establish the real profitability of their customers and to develop service strategies that will improve the profitability of all customers". As a logistics consultant, briefly discuss how you can advise Dumelang's customer service management. 3. (a) List the three main forms of inventory in a…arrow_forwardIt is decided to install several single-jet Pelton wheels to produce a total power of 18 MW. The available head is 246 m. The wheel rotational speed is 650 rpm and the speed ratio (❤) = 0.46. The diameter of the nozzle (jet) is limited to be 0.167 m with a Cv of 0.95. The efficiency of each turbine is 87%. Determine: (1) The number of Pelton wheels to be used, and (2) The bucket angle.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics - Thermodynamics: (21 of 22) Change Of State: Process Summary; Author: Michel van Biezen;https://www.youtube.com/watch?v=AzmXVvxXN70;License: Standard Youtube License