(a)
The best suitable
Answer to Problem 6.8.6P
The best suitable
Explanation of Solution
Given:
The axial load is
The length of the column is
The moment at top in x-direction is
The moment at top in y-direction is
The moment at bottom in x-direction is
The moment at bottom in y-direction is
Calculation:
Write the equation to obtain the load factor.
Here, load factor is
Substitute
Write the equation to obtain factored bending moment at the bottom of the member for braced condition along x-axis.
Here, factored bending moment at bottom along x-axis is
Substitute
Write the equation to obtain factored bending moment at the top of the member for braced condition along x-axis.
Here, factored bending moment at top along x-axis is
Substitute
Write the equation to obtain factored bending moment at the bottom of the member for braced condition along y-axis.
Here, factored bending moment at bottom along y-axis is
Substitute
Write the equation to obtain factored bending moment at the top of the member for braced condition along y-axis.
Here, factored bending moment at top along y-axis is
Substitute
Write the equation to obtain the ultimate moment along x-axis.
Here, factor for braced condition is
Substitute
Write the equation to obtain the ultimate moment along y-axis.
Here, factor for braced condition is
Substitute
The unbraced length and effective length of the member are same.
Try
Write the expression to determine which interaction equation to use.
Here, load factor is
Substitute
Therefore,
Write the expression
Here, load factor is
Substitute
Further solve the above equation.
Hence it is safe to use
Try
Write the expression to determine the interaction equation to be used.
Here, load factor is
Substitute
Therefore,
Write the expression
Here, load factor is
Substitute
Further solve the above equation.
Hence, it is safe to use
Try
Write the expression to determine which interaction equation to use.
Here, load factor is
Substitute
Therefore,
Write the expression
Here, load factor is
Substitute
Further solve the above equation.
Hence, it is safe to use
Further check
Write the expression
Here, load factor is
Substitute
Further solve the above equation.
Hence, it is safe to use
Conclusion:
Thus, use
(b)
The best suitable
Answer to Problem 6.8.6P
The best suitable
Explanation of Solution
Calculation:
Write the equation to obtain the axial service load.
Here, load factor is
Substitute
Write the equation to obtain factored bending moment at the bottom of the member for braced condition along x-axis.
Here, factored bending moment at bottom along x-axis is
Substitute
Write the equation to obtain factored bending moment at the top of the member for braced condition along x-axis.
Here, factored bending moment at top along x-axis is
Substitute
Write the equation to obtain factored bending moment at the bottom of the member for braced condition along y-axis.
Here, factored bending moment at bottom along y-axis is
Substitute
Write the equation to obtain factored bending moment at the top of the member for braced condition along y-axis.
Here, factored bending moment at top along y-axis is
Substitute
Write the equation to obtain the ultimate moment along x-axis.
Here, factor for braced condition is
Substitute
Write the equation to obtain the ultimate moment along y-axis.
Here, factor for braced condition is
Substitute
The unbraced length and effective length of the member are the same.
Try
Write the expression to determine the interaction equation to be used.
Here, load factor is
Substitute
Therefore,
Write the expression
Here, load factor is
Substitute
Further solve the above equation.
Hence, it is safe to use
Try
Write the expression to determine which interaction equation to use.
Here, load factor is
Substitute
Therefore,
Write the expression
Here, load factor is
Substitute
Further solve the above equation.
Hence, it is safe to use
Try
Write the expression to determine which interaction equation to use.
Here, load factor is
Substitute
Therefore,
Write the expression
Here, load factor is
Substitute
Further solve the above equation.
Hence, it is safe to use
Further check
Write the expression
Here, load factor is
Substitute
Further solve the above equation.
Hence, it is safe to use
Conclusion:
Thus, use
Want to see more full solutions like this?
Chapter 6 Solutions
Steel Design (Activate Learning with these NEW titles from Engineering!)
- A flash drum operating at 300 kPa is separating 1000.0 kmol/h of a mixture that is 40.0 mol% isobutane, 25.0% n-pentane, and 35.0% n-hexane. We wish a 90.0% recovery of n-hexane in the liquid. Find Tdrum, xi, yi, and V/F.arrow_forwardSolve using the method of sectionsarrow_forwardSolve using the method of sectionsarrow_forward
- 3. Identify and label the key components that make up the low-slope roofing system in the diagram below. (5 points)arrow_forwardASSIGNMENT. 1. The following figure is a billboard sketch, design the members. Hint, the billboard is usually designed against wind loads and its own self weight. For the dimensions, you can visit existing billboards to see usual dimensions. 3D Viewarrow_forwardIn order to solve the frame given below with the Force Method, remove restraints from joints A and G and draw only the bending moment diagrams Mo, M₁, M2 and M3 for this case. (25 Pts.) Note: Only bending moment diagrams that are used for the solution are required. There is no need to do any further calculations. 4 kN B I E D 2 kN/m H 3 m 3 m 4 m + 2 m 4marrow_forward
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning