Concept explainers
(a)
The suitable
Answer to Problem 6.8.7P
The best suitable
Explanation of Solution
Given:
The axial load is
The dead load is the
The live load is the
The length of the column is
The moment at top in x-direction is
The moment at top in y-direction is
The moment at bottom in x-direction is
The moment at bottom in y-direction is
Calculation:
Write the equation to obtain the load factor.
Here, load factor is
Calculate the dead load:
Calculate the live load:
Substitute
Write the equation to obtain the factored bending moment at the bottom of the member for braced condition along x-axis.
Here, factored bending moment at bottom along x-axis is
Calculate the bending moment along x-direction at bottom due to dead load.
Calculate the bending moment along x-direction at bottom due to live load.
Substitute
Write the equation to obtain factored bending moment at the top of the member for braced condition along x-axis.
Here, factored bending moment at top along x-axis is
Calculate the bending moment along x-direction at top due to dead load.
Calculate the bending moment along x-direction at top due to live load.
Substitute
Write the equation to obtain factored bending moment at the bottom of the member for braced condition along y-axis.
Here, factored bending moment at bottom along y-axis is
Calculate the bending moment along y-direction at bottom due to dead load.
Calculate the bending moment along y-direction at bottom due to live load.
Substitute
Write the equation to obtain the factored bending moment at the top of the member for braced condition along y-axis.
Here, factored bending moment at top along y-axis is
Calculate the bending moment along y-direction at top due to dead load.
Calculate the bending moment along y-direction at top due to live load.
Substitute
Write the equation to obtain the ultimate moment along x-axis.
Here, factor for braced condition is
Substitute,
Write the equation to obtain the ultimate moment along y-axis.
Here, factor for braced condition is
Substitute,
The unbraced length and effective length of the member are same.
Try
Write the expression to determine which interaction equation to use.
Here, load factor is
Substitute
Therefore,
Write the expression
Here, load factor is
Substitute,
Further solve the above equation.
Hence, it is safe to use
Try
Write the expression to determine the interaction equation to be used.
Here, load factor is
Substitute
Therefore,
Write the expression
Here, load factor is
Substitute,
Further solve the above equation.
Hence, it is safe to use
Try
Write the expression to determine the interaction equation to be used.
Here, load factor is
Substitute
Therefore,
Write the expression
Here, load factor is
Substitute
Further solve the above equation.
Hence, it is safe to use
Further check
Write the expression
Here, load factor is
Substitute
Further solve the above equation.
Hence, it is safe to use
Conclusion:
Thus, use
(b)
The best suitable
Answer to Problem 6.8.7P
The best suitable
Explanation of Solution
Calculation:
Write the equation to obtain the axial service load.
Here, load factor is
Calculate the dead load:
Calculate the live load:
Substitute
Write the equation to obtain factored bending moment at the bottom of the member for braced condition along x-axis.
Here, factored bending moment at bottom along x-axis is
Calculate the bending moment along x-direction at bottom due to dead load.
Calculate the bending moment along x-direction at bottom due to live load.
Substitute
Write the equation to obtain factored bending moment at the top of the member for braced condition along x-axis.
Here, factored bending moment at top along x-axis is
Calculate the bending moment along x-direction at top due to dead load.
Calculate the bending moment along x-direction at top due to live load.
Substitute
Write the equation to obtain factored bending moment at the bottom of the member for braced condition along y-axis.
Here, factored bending moment at bottom along y-axis is
Calculate the bending moment along y-direction at bottom due to dead load.
Calculate the bending moment along y-direction at bottom due to live load.
Substitute
Write the equation to obtain factored bending moment at the top of the member for braced condition along y-axis.
Here, factored bending moment at top along y-axis is
Calculate the bending moment along y-direction at top due to dead load.
Calculate the bending moment along y-direction at top due to live load.
Substitute
Write the equation to obtain the ultimate moment along x-axis.
Here, factor for braced condition is
Substitute
Write the equation to obtain the ultimate moment along y-axis.
Here, factor for braced condition is
Substitute
The unbraced length and effective length of the member are same.
Try
Write the expression to determine which interaction equation to use.
Here, load factor is
Substitute
Therefore,
Write the expression
Here, load factor is
Substitute
Further solve the above equation.
Hence, it is safe to use
Conclusion:
Thus, use
Want to see more full solutions like this?
Chapter 6 Solutions
Steel Design (Activate Learning with these NEW titles from Engineering!)
- to determine the bearing capacity for the given beam a=0.5 m sigma1 =150 N/mm2 and sigma2 =200N/mm2.arrow_forwardUnlike XRF,AAS cannot be used for nondestructive testing.Explain why not.arrow_forwardQ.2 The girder AB as shown in Fig. 2 has a span of 18m and supports concentrated loads located as shown. Determine the plastic moment capacity MP and the plastic collapse load Pc for the given load conditions. Use either Equilibrium drVirtual Work method in your solution. [30 marks] 5P 5P C d B 6 m 6 m 6 m 18 m Fig. 2 - Prismatic Continuousarrow_forward
- 337 kN -Weld -25° 6 mm PROBLEM 1.33 A steel pipe of 300 mm outer diameter is fabricated from 6 mm thick plate by welding along a helix which forms an angle of 25° with a plane perpendicular to the axis of the pipe. Knowing that the maximum allowable normal and shearing stresses in directions respectively normal and tangential to the weld are σ = 50 MPa and 7 = 30 MPa, determine the magnitude P of the largest axial force that can be applied to the pipe.arrow_forward2.2 Identify the Zero Force Members for the truss shown. Show your final answer with a sketch and mark the zero force bars with "0". D 700 N 500 Narrow_forward1. (a) Explain Rankine's Theory of lateral earth pressures (at rest, active and passive) in terms of Mohr's circles. (6%) (b) What are the two important assumptions of Rankine in determination of lateral earth pressures on a retaining structure? (4%) (c) Show all the pressures acting on the wall below and determine them (30%) 0.5m 10 5.0 m 1.0 m Sand Y-18.5 kN/m³ $-36° Tos m 1.5m 1.0 m 1.0 marrow_forward
- 100% sure experts solve it correct complete solutions okk. Not generalizedarrow_forward2) Draw the shear force and bending moment diagrams of the following beam. Use method of areas. 5 t/m Z 10t hinge 5 m |1m|1m|1m m+ 2 m 21 A- All electronic communication tools like mobile phones, computers, tablets, etc. will not be in an open and visible area during the exam. B- According to the provision of Article (a-5) of the Higher Education Law No. 2547, "Attempting to cheat in exams" is a disciplinary offense that requires "Condemnation punishment". C- According to the provisi Article 54-(c-5) of the Higher Education Law No. 2547, "Cheating or causing others to cheat in exams" is a disciplinary offense that requires "Suspension from the Hi Education Institution for one semester". D- According to the provision of Article 54-(d-4) of the Higher Education Law No. 2547, "Cheating in exams by threatening, prever cheating students from being removed from the exam hall, having someone else take the exam instead of oneself or taking the exam in someone else's place" is a discipl offense…arrow_forwardYou have been appointed as a safety consultant by Siyakha Civil (Pty) Ltd for their new property development project. Advise them on the safety requirements for the construction of the floors and roofs of the buildings they have designed.arrow_forward
- Given the arrow diagram for a construction project with their dependencies. Draw the precedence diagram for that project. 2 3 B 12 4 16 5 7 (F 80 10 5 9 (H)arrow_forwardTables A1E-A12E are the English-Units versions of the Tables A1-A12. Using these tables, determine the specific volume of water at 500 PSI and 50 °F. Show the steps and draw a diagram (like how we did in class) to determine the phase.arrow_forwardWhat is the formula of B coefficient beta T and beta C if you will not use any software ?arrow_forward
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning