
Concept explainers
(a)
The suitable

Answer to Problem 6.8.7P
The best suitable
Explanation of Solution
Given:
The axial load is
The dead load is the
The live load is the
The length of the column is
The moment at top in x-direction is
The moment at top in y-direction is
The moment at bottom in x-direction is
The moment at bottom in y-direction is
Calculation:
Write the equation to obtain the load factor.
Here, load factor is
Calculate the dead load:
Calculate the live load:
Substitute
Write the equation to obtain the factored bending moment at the bottom of the member for braced condition along x-axis.
Here, factored bending moment at bottom along x-axis is
Calculate the bending moment along x-direction at bottom due to dead load.
Calculate the bending moment along x-direction at bottom due to live load.
Substitute
Write the equation to obtain factored bending moment at the top of the member for braced condition along x-axis.
Here, factored bending moment at top along x-axis is
Calculate the bending moment along x-direction at top due to dead load.
Calculate the bending moment along x-direction at top due to live load.
Substitute
Write the equation to obtain factored bending moment at the bottom of the member for braced condition along y-axis.
Here, factored bending moment at bottom along y-axis is
Calculate the bending moment along y-direction at bottom due to dead load.
Calculate the bending moment along y-direction at bottom due to live load.
Substitute
Write the equation to obtain the factored bending moment at the top of the member for braced condition along y-axis.
Here, factored bending moment at top along y-axis is
Calculate the bending moment along y-direction at top due to dead load.
Calculate the bending moment along y-direction at top due to live load.
Substitute
Write the equation to obtain the ultimate moment along x-axis.
Here, factor for braced condition is
Substitute,
Write the equation to obtain the ultimate moment along y-axis.
Here, factor for braced condition is
Substitute,
The unbraced length and effective length of the member are same.
Try
Write the expression to determine which interaction equation to use.
Here, load factor is
Substitute
Therefore,
Write the expression
Here, load factor is
Substitute,
Further solve the above equation.
Hence, it is safe to use
Try
Write the expression to determine the interaction equation to be used.
Here, load factor is
Substitute
Therefore,
Write the expression
Here, load factor is
Substitute,
Further solve the above equation.
Hence, it is safe to use
Try
Write the expression to determine the interaction equation to be used.
Here, load factor is
Substitute
Therefore,
Write the expression
Here, load factor is
Substitute
Further solve the above equation.
Hence, it is safe to use
Further check
Write the expression
Here, load factor is
Substitute
Further solve the above equation.
Hence, it is safe to use
Conclusion:
Thus, use
(b)
The best suitable

Answer to Problem 6.8.7P
The best suitable
Explanation of Solution
Calculation:
Write the equation to obtain the axial service load.
Here, load factor is
Calculate the dead load:
Calculate the live load:
Substitute
Write the equation to obtain factored bending moment at the bottom of the member for braced condition along x-axis.
Here, factored bending moment at bottom along x-axis is
Calculate the bending moment along x-direction at bottom due to dead load.
Calculate the bending moment along x-direction at bottom due to live load.
Substitute
Write the equation to obtain factored bending moment at the top of the member for braced condition along x-axis.
Here, factored bending moment at top along x-axis is
Calculate the bending moment along x-direction at top due to dead load.
Calculate the bending moment along x-direction at top due to live load.
Substitute
Write the equation to obtain factored bending moment at the bottom of the member for braced condition along y-axis.
Here, factored bending moment at bottom along y-axis is
Calculate the bending moment along y-direction at bottom due to dead load.
Calculate the bending moment along y-direction at bottom due to live load.
Substitute
Write the equation to obtain factored bending moment at the top of the member for braced condition along y-axis.
Here, factored bending moment at top along y-axis is
Calculate the bending moment along y-direction at top due to dead load.
Calculate the bending moment along y-direction at top due to live load.
Substitute
Write the equation to obtain the ultimate moment along x-axis.
Here, factor for braced condition is
Substitute
Write the equation to obtain the ultimate moment along y-axis.
Here, factor for braced condition is
Substitute
The unbraced length and effective length of the member are same.
Try
Write the expression to determine which interaction equation to use.
Here, load factor is
Substitute
Therefore,
Write the expression
Here, load factor is
Substitute
Further solve the above equation.
Hence, it is safe to use
Conclusion:
Thus, use
Want to see more full solutions like this?
Chapter 6 Solutions
Steel Design (Activate Learning with these NEW titles from Engineering!)
- K/S 46. (O المهمات الجديدة 0 المنتهية 12 المغـ ۱۱:۰۹ search ليس لديك اي مهمات ☐ ○ ☑arrow_forwardI need help setti if this problem up and solving. I keep doing something wrong.arrow_forward1.0 m (Eccentricity in one direction only)=0.15 m Call 1.5 m x 1.5m Centerline An eccentrically loaded foundation is shown in the figure above. Use FS of 4 and determine the maximum allowable load that the foundation can carry if y = 18 kN/m³ and ' = 35°. Use Meyerhof's effective area method. For '=35°, N = 33.30 and Ny = 48.03. (Enter your answer to three significant figures.) Qall = kNarrow_forward
- What are some advantages and disadvantages of using prefabrication in construction to improve efficiency and cut down on delays?arrow_forwardPROBLEM:7–23. Determine the maximum shear stress acting in the beam at the critical section where the internal shear force is maximum. 3 kip/ft ΑΟ 6 ft DiC 0.75 in. 6 ft 6 in. 1 in. F [ 4 in. C 4 in. D 6 in. Fig of prob:7-23 1 in. 6 ft Barrow_forward7.60 This abrupt expansion is to be used to dissipate the high-energy flow of water in the 5-ft-diameter penstock. Assume α = 1.0 at all locations. a. What power (in horsepower) is lost through the expansion? b. If the pressure at section 1 is 5 psig, what is the pressure at section 2? c. What force is needed to hold the expansion in place? 5 ft V = 25 ft/s Problem 7.60 (2) 10 ftarrow_forward
- 7.69 Assume that the head loss in the pipe is given by h₁ = 0.014(L/D) (V²/2g), where L is the length of pipe and D is the pipe diameter. Assume α = 1.0 at all locations. a. Determine the discharge of water through this system. b. Draw the HGL and the EGL for the system. c. Locate the point of maximum pressure. d. Locate the point of minimum pressure. e. Calculate the maximum and minimum pressures in the system. Elevation 100 m Water T = 10°C L = 100 m D = 60 cm Elevation 95 m Elevation 100 m L = 400 m D = 60 cm Elevation = 30 m Nozzle 30 cm diameter jet Problem 7.69arrow_forwardA rectangular flume of planed timber (n=0.012) slopes 0.5 ft per 1000 ft. (i)Compute the discharge if the width is 7 ft and the depth of water is 3.5 ft. (ii) What would be thedischarge if the width were 3.5 ft and depth of water is 7 ft? (iii) Which of the two forms wouldhave greater capacity and which would require less lumber?arrow_forwardFigure shows a tunnel section on the Colorado River Aqueduct. The area of the water cross section is 191 ft 2 , and the wetted perimeter is 39.1 ft. The flow is 1600 cfs. If n=0.013 for the concrete lining, find the slope.arrow_forward
- 7.48 An engineer is making an estimate for a home owner. This owner has a small stream (Q= 1.4 cfs, T = 40°F) that is located at an elevation H = 34 ft above the owner's residence. The owner is proposing to dam the stream, diverting the flow through a pipe (penstock). This flow will spin a hydraulic turbine, which in turn will drive a generator to produce electrical power. Estimate the maximum power in kilowatts that can be generated if there is no head loss and both the turbine and generator are 100% efficient. Also, estimate the power if the head loss is 5.5 ft, the turbine is 70% efficient, and the generator is 90% efficient. Penstock Turbine and generator Problem 7.48arrow_forwarddesign rectangular sections for the beam and loads, and p values shown. Beam weights are not included in the loads given. Show sketches of cross sections including bar sizes, arrangements, and spacing. Assume concrete weighs 23.5 kN/m'. fy= 420 MPa, and f’c= 21 MPa.Show the shear and moment diagrams as wellarrow_forwardDraw as a 3D object/Isometricarrow_forward
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning
