Steel Design (Activate Learning with these NEW titles from Engineering!)
Steel Design (Activate Learning with these NEW titles from Engineering!)
6th Edition
ISBN: 9781337094740
Author: Segui, William T.
Publisher: Cengage Learning
Question
Book Icon
Chapter 6, Problem 6.2.1P
To determine

(a)

The satisfaction of AISC interaction equation using LRFD.

Expert Solution
Check Mark

Answer to Problem 6.2.1P

The member satisfies the AISC interaction equation.

Explanation of Solution

Given:

The load is 250kips.

The length of member is 14feet.

The value of kx and ky are 1.0 and 1.0.

The flexural load is 240ftkips.

Concept Used:

Write the LRFD interaction equation.

PuϕcPn+89(MuxϕbMnx+MuyϕbMny)1.0 ...... (I)

Here, the factored load is Pu, the axial compressive design strength is ϕcP, the flexural load about x and y-axis are Mux and Muy and the nominal flexural strength about x and y-axis are ϕbMnx and ϕbMny.

Calculation:

Calculate the factored load.

Pu=1.2(DL)+1.6(LL) ...... (II)

Here, the dead load is DL and the live load is LL.

Substitute 125kips for DL and 125kips for LL in Equation (II).

Pu=1.2(125kips)+1.6(125kips)=150kips+200kips=350kips

Calculate the effective length of the member.

Le=ky×L ...... (III)

Here, the unsupported length is L and the effective length factor is ky.

Substitute 14ft for L and 1.0 for ky in Equation (III).

Le=1.0×14ft=14ft

Calculate the axial compressive design strength.

From the manual table, the axial compressive design strength of a W12×106 with fy=50ksi and Le=14ft is 1130kips.

Calculate the nominal flexural strength about x-axis.

From the design table, calculate the nominal flexural strength about x-axis by using Cb=1.0 and Lb=14ft.

ϕbMnx=597ftkips

Calculate the flexural load about x-axis.

Mux=1.2(MD)+1.6(ML) ...... (IV)

Here, the flexural dead load is MD and the flexural live load is ML.

Substitute 120ftkips for MD and 120ftkips for ML in Equation (IV).

Mux=1.2(120ftkips)+1.6(120ftkips)=144ftkips+192ftkips=336ftkips

There is no bending about y-axis, therefore ϕbMny=0ftkips and Muy=0ftkips.

Write the equation to calculate the controlling interaction formula.

r=PuϕcPn ...... (V)

Substitute 44kips for Pu and 1130kips for ϕcPn in Equation (V).

r=350kips1130kips=0.3097

The value is greater than 0.2.

Calculate the LRFD interaction equation.

Substitute 350kips for Pu, 1130kips for ϕcPn, 336ftkips for Mux, 0ftkips for Muy, 597ftkips for ϕbMnx and 0ftkips for ϕbMny in Equation (I).

350kips1130kips+89(336ftkips597ftkips+0ftkips0ftkips)1.00.3097+89(0.5628)1.00.3097+0.50021.00.80991.0

The interaction equation is satisfied.

Conclusion:

Therefore, the interaction equation is satisfied with the AISD interaction equation.

To determine

(b)

The satisfaction of AISC interaction equation using ASD.

Expert Solution
Check Mark

Answer to Problem 6.2.1P

The member satisfies the AISC interaction equation.

Explanation of Solution

Concept Used:

Write the ASD interaction equation.

PuPnΩc+89(MuxMnxΩc+MuyMnyΩc)1.0 ...... (VI)

Here, the factored load is Pu, the allowed compressive strength is PnΩc, the flexural load about x and y-axis are Mux and Muy and the nominal flexural strength about x and y-axis are MnxΩc and MnyΩc.

Calculation:

Calculate the factored load.

Pu=DL+LL ...... (VII)

Here, the dead load is DL and the live load is LL.

Substitute 125kips for DL and 125kips for LL in Equation (VII).

Pu=125kips+125kips=250kips

Calculate the allowed compressive strength.

From the manual table, the allowed compressive strength of a W12×106 with fy=50ksi and Le=14f is 755kips.

Calculate the nominal flexural strength about x-axis.

From the design table, calculate the nominal flexural strength about x-axis by using Cb=1.0 and Lb=14f.

MnxΩc=398ftkips

Calculate the flexural load about x-axis.

Mux=MD+ML ...... (VIII)

Here, the flexural dead load is MD and the flexural live load is ML.

Substitute 120ftkips for MD and 120ftkips for ML in Equation (VIII).

Mux=120ftkips+120ftkips=240ftkips

There is no bending about y-axis, therefore MnyΩc=0ftkips and Muy=0ftkips.

Write the equation to calculate the controlling interaction formula.

r=PuPnΩc ...... (IX)

Substitute 250kips for Pu and 755kips for PnΩc in Equation (IX).

r=250kips755kips=0.331

The value is greater than 0.2.

Calculate the ASD interaction equation.

Substitute 250kips for Pu, 755kips for PnΩc, 240ftkips for Mux, 0ftkips for Muy, 398ftkips for MnxΩc and 0ftkips for MnyΩc in Equation (VI).

250kips755kips+89(240ftkips398ftkips+0ftkips0ftkips)1.00.3311+89(0.6030)1.00.3311+0.5361.00.86711.0

The interaction equation is satisfied.

Conclusion:

Therefore, the interaction equation is satisfied with the ASD interaction equation.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Draw the shear and bending moment diagrams and find the immediate deflection for a simply supported beam of length 20 ft. with the same live load at ½ span and cross-section as the previous problem. Assume a reasonable Modulus of Elasticity and concrete self-weight. Hint: You may look online for typical concrete self-weights and compressive strengths. You may also use the ACI 318 Code equation for the Modulus of Elasticity shown below, and the supplied Design Aids.
Problem 4. A major transmission pathway of the novel coronavirus disease 2019 (COVID- 19) is through droplets and aerosols produced by violent respiratory events such as sneezes and coughs (Fig. 1). For the purpose of providing public health guidelines, we would like to estimate the amount of time it takes for these droplets to settle from air to the ground. The relevant parameters are the settling time (ts), the initial height of the droplets (H), gravitational acceleration (g), density of the droplets (pa), radius of the droplets (R), as well as dynamic viscosity of the ambient air (Pair). Use dimensional analysis and the Buckingham theorem to answer the following questions: 1. Find the independent dimensionless parameters using the table method. Then, express the settling time as a function of the other relevant parameters. Your solution should match the physical intuition that the settling time scales linearly with the initial height. 2. How would the settling change if the…
Question 4 An engineer is assigned to design a 25-stories office building which has a building height of 75 m. Reinforced concrete shear wall system as shown in Figure Q1(a) is adopted to resist the lateral loads. The shear wall is of thickness t = 350 mm and length L = 8.5 m. Use the following data: Young's modulus of concrete E = 28 kN/mm² and the lateral load intensity w = 1.20 kN/m². Assuming the frontal width of the building façade is 15 m is facing the wind force which in turn transmitting the wind force to the shear wall system, estimate the total value of sway A at the roof level. Question 5 For the Shear Wall in Question 4, if the total ultimate gravity load of the building acted on shear wall is 6000 KN, using a partial factor of 1.2 for the wind load, calculate the stress on the extreme right corner of the shear wall at first storey level. (A) 9.46 mm (B) 189.26 mm (C) 14.20 mm (D) 141.95 mm STOREY FLOOR LEV Shear wall Figure Q1(a) (A) 3.228 N/sq mm (B) 14.029 N/sq mm 75 m…
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning