Organic Chemistry (8th Edition)
Organic Chemistry (8th Edition)
8th Edition
ISBN: 9780134042282
Author: Paula Yurkanis Bruice
Publisher: PEARSON
Question
Book Icon
Chapter 6, Problem 66P

(a)

Interpretation Introduction

Interpretation:

The major product for the given reaction should be determined.

Concept introduction:

Nucleophile: Nucleophiles are electron rich compounds which donates electrons to electrophilic compounds which results in bond formation.

Electrophile: Electrophiles are electron deficient compounds which accepts electrons from nucleophiles that results in bond formation.

Electrophilic addition: It is a type of addition reaction in which the pi bond present in the molecule breaks as the electrophile approaches and results in the formation of product with sigma bond.

Oxidation Reaction: It involves loss of electrons, addition of oxygen atoms or removal of hydrogen atoms.

Reduction Reaction: It is just opposite of oxidation reaction which involves removal of oxygen atoms or addition of hydrogen atoms and addition of electrons.

Carbocation: it is carbon ion that bears a positive charge on it.

Carbocation stability order:

Organic Chemistry (8th Edition), Chapter 6, Problem 66P , additional homework tip  1

(b)

Interpretation Introduction

Interpretation:

The major product for the given reaction should be determined.

Concept introduction:

Nucleophile: Nucleophiles are electron rich compounds which donates electrons to electrophilic compounds which results in bond formation.

Electrophile: Electrophiles are electron deficient compounds which accepts electrons from nucleophiles that results in bond formation.

Electrophilic addition: It is a type of addition reaction in which the pi bond present in the molecule breaks as the electrophile approaches and results in the formation of product with sigma bond.

Addition of halogen to an alkene: The addition of halogen to an alkene compound forms cyclic 3 membered intermediate as the first step which then the leads to the product formation. Example for this is as follows,

Organic Chemistry (8th Edition), Chapter 6, Problem 66P , additional homework tip  2

Oxidizing Reagents: The chemical agents used to add oxygen or remove hydrogen which finally reduced on oxidizing the other compound.

Carbocation: it is carbon ion that bears a positive charge on it.

Carbocation stability order:

Organic Chemistry (8th Edition), Chapter 6, Problem 66P , additional homework tip  3

(c)

Interpretation Introduction

Interpretation:

The major product for the given reaction should be determined.

Concept introduction:

Nucleophile: Nucleophiles are electron rich compounds which donates electrons to electrophilic compounds which results in bond formation.

Electrophile: Electrophiles are electron deficient compounds which accepts electrons from nucleophiles that results in bond formation.

Electrophilic addition: It is a type of addition reaction in which the pi bond present in the molecule breaks as the electrophile approaches and results in the formation of product with sigma bond.

Oxidation Reaction: It involves loss of electrons, addition of oxygen atoms or removal of hydrogen atoms.

Oxidizing Reagents: The chemical agents used to add oxygen or remove hydrogen which finally reduced on oxidizing the other compound.

Carbocation: it is carbon ion that bears a positive charge on it.

Carbocation stability order:

Organic Chemistry (8th Edition), Chapter 6, Problem 66P , additional homework tip  4

(d)

Interpretation Introduction

Interpretation:

The major product for the given reaction should be determined.

Concept introduction:

Nucleophile: Nucleophiles are electron rich compounds which donates electrons to electrophilic compounds which results in bond formation.

Electrophile: Electrophiles are electron deficient compounds which accepts electrons from nucleophiles that results in bond formation.

Electrophilic addition: It is a type of addition reaction in which the pi bond present in the molecule breaks as the electrophile approaches and results in the formation of product with sigma bond.

Oxidation Reaction: It involves loss of electrons, addition of oxygen atoms or removal of hydrogen atoms.

Acid Catalyzed Hydration Reaction: The reaction involves breaking of phi bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.

First step is the acid donates proton to the alkene which leads to the formation of more stable carbo cation.

Then, the water is added to the given alkene through acid catalyzed reaction where the water gets added to the carbo cation finally, the removal of one proton from oxonium ion (oxygen with one positive charge) using water results in the formation of product.

Carbocation: it is carbon ion that bears a positive charge on it.

Carbocation stability order:

Organic Chemistry (8th Edition), Chapter 6, Problem 66P , additional homework tip  5

(e)

Interpretation Introduction

Interpretation:

The major product for the given reaction should be determined.

Concept introduction:

Nucleophile: Nucleophiles are electron rich compounds which donates electrons to electrophilic compounds which results in bond formation.

Electrophile: Electrophiles are electron deficient compounds which accepts electrons from nucleophiles that results in bond formation.

Electrophilic addition: It is a type of addition reaction in which the pi bond present in the molecule breaks as the electrophile approaches and results in the formation of product with sigma bond.

Addition of halogen to an alkene: The addition of halogen to an alkene compound forms cyclic 3 membered intermediate as the first step which then the leads to the product formation. Example for this is as follows,

Organic Chemistry (8th Edition), Chapter 6, Problem 66P , additional homework tip  6

Oxidizing Reagents: The chemical agents used to add oxygen or remove hydrogen which finally reduced on oxidizing the other compound.

Carbocation: it is carbon ion that bears a positive charge on it.

Carbocation stability order:

Organic Chemistry (8th Edition), Chapter 6, Problem 66P , additional homework tip  7

(f)

Interpretation Introduction

Interpretation:

The major product for the given reaction should be determined.

Concept introduction:

Nucleophile: Nucleophiles are electron rich compounds which donates electrons to electrophilic compounds which results in bond formation.

Electrophile: Electrophiles are electron deficient compounds which accepts electrons from nucleophiles that results in bond formation.

Electrophilic addition: It is a type of addition reaction in which the pi bond present in the molecule breaks as the electrophile approaches and results in the formation of product with sigma bond.

Oxidation Reaction: It involves loss of electrons, addition of oxygen atoms or removal of hydrogen atoms.

Ozonolysis Reaction: It is an oxidative reaction which is used to oxidize the carbon-carbon double and triple bond.

Oxidizing Reagents: The chemical agents used to add oxygen or remove hydrogen which finally reduced on oxidizing the other compound.

Carbocation: it is carbon ion that bears a positive charge on it.

Carbocation stability order:

Organic Chemistry (8th Edition), Chapter 6, Problem 66P , additional homework tip  8

(g)

Interpretation Introduction

Interpretation:

The major product for the given reaction should be determined.

Concept introduction:

Nucleophile: Nucleophiles are electron rich compounds which donates electrons to electrophilic compounds which results in bond formation.

Electrophile: Electrophiles are electron deficient compounds which accepts electrons from nucleophiles that results in bond formation.

Electrophilic addition: It is a type of addition reaction in which the pi bond present in the molecule breaks as the electrophile approaches and results in the formation of product with sigma bond.

Oxidation Reaction: It involves loss of electrons, addition of oxygen atoms or removal of hydrogen atoms.

Acid Catalyzed Hydration Reaction: The reaction involves breaking of phi bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.

First step is the acid donates proton to the alkene which leads to the formation of more stable carbo cation.

Then, the water is added to the given alkene through acid catalyzed reaction where the water gets added to the carbo cation finally, the removal of one proton from oxonium ion (oxygen with one positive charge) using water results in the formation of product.

Carbocation: it is carbon ion that bears a positive charge on it.

Carbocation stability order:

Organic Chemistry (8th Edition), Chapter 6, Problem 66P , additional homework tip  9

(h)

Interpretation Introduction

Interpretation:

The major product for the given reaction should be determined.

Concept introduction:

Nucleophile: Nucleophiles are electron rich compounds which donates electrons to electrophilic compounds which results in bond formation.

Electrophile: Electrophiles are electron deficient compounds which accepts electrons from nucleophiles that results in bond formation.

Electrophilic addition: It is a type of addition reaction in which the pi bond present in the molecule breaks as the electrophile approaches and results in the formation of product with sigma bond.

Addition of halogen to an alkene: The addition of halogen to an alkene compound forms cyclic 3 membered intermediate as the first step which then the leads to the product formation. Example for this is as follows,

Organic Chemistry (8th Edition), Chapter 6, Problem 66P , additional homework tip  10

Oxidizing Reagents: The chemical agents used to add oxygen or remove hydrogen which finally reduced on oxidizing the other compound.

Carbocation: it is carbon ion that bears a positive charge on it.

Carbocation stability order:

Organic Chemistry (8th Edition), Chapter 6, Problem 66P , additional homework tip  11

Blurred answer
Students have asked these similar questions
Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. Select to Edit Arrows H H Select to Add Arrows > H CFCI: Select to Edit Arrows H Select to Edit Arrows
Show work with explanation needed. don't give Ai generated solution
Show work. don't give Ai generated solution

Chapter 6 Solutions

Organic Chemistry (8th Edition)

Ch. 6.5 - Prob. 11PCh. 6.6 - a. What is the major product or each or the...Ch. 6.6 - Prob. 14PCh. 6.6 - Prob. 15PCh. 6.7 - What is the major product obtained from the...Ch. 6.8 - Which is more highly regionselective: reaction of...Ch. 6.8 - Prob. 19PCh. 6.9 - What will be the product of the preceding reaction...Ch. 6.9 - Prob. 21PCh. 6.9 - Prob. 22PCh. 6.9 - Prob. 23PCh. 6.9 - What is the product of the addition of 1Cl to...Ch. 6.9 - What will be the major product obtained from the...Ch. 6.9 - Propose a mechanism for the following reaction:Ch. 6.10 - Draw structures for the following: a. 24...Ch. 6.10 - What alkene would you treat with a peroxyacid in...Ch. 6.11 - What products are formed when the following...Ch. 6.11 - Prob. 31PCh. 6.11 - Prob. 32PCh. 6.11 - The following product was obtained from the...Ch. 6.12 - What characteristics must the reactant of a...Ch. 6.13 - Prob. 36PCh. 6.13 - What stereoisomers are obtained from each of the...Ch. 6.13 - Prob. 41PCh. 6.13 - Prob. 42PCh. 6.13 - Prob. 43PCh. 6.13 - Prob. 45PCh. 6.13 - Prob. 46PCh. 6.13 - Prob. 47PCh. 6.13 - Prob. 48PCh. 6.13 - Prob. 49PCh. 6.13 - Prob. 50PCh. 6.14 - Prob. 51PCh. 6.16 - Prob. 53PCh. 6.16 - Explain why 3-methykyclohexene should not be used...Ch. 6 - Prob. 55PCh. 6 - Prob. 56PCh. 6 - Prob. 57PCh. 6 - What is the major product of the reaction of...Ch. 6 - Give two names for each of the following:Ch. 6 - Prob. 60PCh. 6 - What are the products of the following reactions?...Ch. 6 - When 3-methyl-1-butene reacts with HBr, two alkyl...Ch. 6 - Draw curved arrows to show the flow of electrons...Ch. 6 - What reagents are needed to carry out the...Ch. 6 - Prob. 65PCh. 6 - Prob. 66PCh. 6 - Prob. 67PCh. 6 - What is more stable? a. CH3C+HCH3orCH3C+HCH2ClCh. 6 - Prob. 69PCh. 6 - a. Draw the product or products that will be...Ch. 6 - Prob. 71PCh. 6 - The second-order rate constant (in units of M1s1)...Ch. 6 - Which compound has the greater dipole moment?Ch. 6 - Prob. 74PCh. 6 - Prob. 75PCh. 6 - Prob. 76PCh. 6 - Prob. 77PCh. 6 - Prob. 78PCh. 6 - Prob. 79PCh. 6 - Prob. 80PCh. 6 - Prob. 81PCh. 6 - Prob. 82PCh. 6 - Prob. 83PCh. 6 - Prob. 84PCh. 6 - Prob. 85PCh. 6 - Prob. 86PCh. 6 - Draw the products of the following reactions. If...Ch. 6 - Prob. 88PCh. 6 - Prob. 89PCh. 6 - Prob. 90PCh. 6 - Two chemists at Dupont found that lCH2Znl is...Ch. 6 - Prob. 92PCh. 6 - Prob. 93PCh. 6 - What alkene gives the product shown after...Ch. 6 - Prob. 95PCh. 6 - Prob. 96PCh. 6 - Prob. 97PCh. 6 - Prob. 98PCh. 6 - Prob. 99PCh. 6 - Prob. 100PCh. 6 - Propose a mechanism for the following reaction:Ch. 6 - Prob. 102PCh. 6 - Prob. 103P