Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259877827
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 66P
Water flowing steadily at a rate of 0.16 m3/s is deflected downward by an angled elbow as shown in Fig. P6- 66. For D= 30 cm. d= 10 cm. and h = 0 cm. determine the force acting on the flanges of the elbow and the angle its line of action makes with the horizontal. Take the internal volume of the elbow to be 0.03 m3 and disregard the weight of the elbow material and the frictional effects.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem (2)
Neglecting friction, find the horizontal force of the water (N) on
the horizontal bend shown in the figure.
V, = 10 m/s
%3D
8 cm dia.
V2
4 cm
Answer:
Fluid Mechanics
The three-arm lawn sprinkler shown in the figure receives water through the center. if the torque due to collar friction is 0.9 N-m, determine the minimun flow rate of the water (in m^3/h) required to overcome this torque and spin the sprinkler.
6-22 A 90° elbaw is used to direct water flow at a rate of
25 kgis in a horizontal pipe upward. The diameter of the
entire elbow is 10 cm. The elbow discharges water into the
atmosphere, and thus the pressure at the exit is the local
atmospheric pressure. The elevation difference between the
centers of the exit and the inlet of the elbow is 35 cm. The
weight of the elbow and the water in it is considered to be
negligible. Determine (a) the gage pressure at the center of
the inlet of the elbow and (b) the anchoring force needed to
hold the elbow in place. Take the momentum-flux correction
factor to be 1.03.
35 cm
Water
25 kg/s
Chapter 6 Solutions
Fluid Mechanics: Fundamentals and Applications
Ch. 6 - Express Newton’s second law of motion for rotating...Ch. 6 - Express Newton’s first, second, and third laws.Ch. 6 - Is momentum a vector? If so, in what direction...Ch. 6 - Express the conservation of momentum principle....Ch. 6 - How do surface forces arise in the momentum...Ch. 6 - Explain the importance of the Reynolds transport...Ch. 6 - What is the importance of the momentum-flux...Ch. 6 - Write the momentum equation for steady...Ch. 6 - In the application of the momentum equation,...Ch. 6 - Two firefighters are fighting a fire with...
Ch. 6 - A rocket in space (no friction or resistance to...Ch. 6 - Describe in terms of momentum and airflow how a...Ch. 6 - Does it take more, equal, or less power for a...Ch. 6 - In a given location, would a helicopter require...Ch. 6 - Describe body forces and surface forces, and...Ch. 6 - A constant-velocity horizontal water jet from a...Ch. 6 - A horizontal water jet of constant velocity V from...Ch. 6 - A horizontal water jet from a nozzle of constant...Ch. 6 - A 2.5-cm-diameter horizontal water jet with a...Ch. 6 - A 90 elbow in a horizontal pipe is used to direct...Ch. 6 - Repeat Prob. 6-20 for the case of another...Ch. 6 - A horizontal water jet impinges against a vertical...Ch. 6 - Water enters a 7-cm-diameter pipe steadily with a...Ch. 6 - A reducing elbow in a horizontal pipe is used to...Ch. 6 - Repeat Prob. 6-24 for the case of = 125°.Ch. 6 - A 100-ft3/s water jet is moving in the positive...Ch. 6 - Reconsider Prob. 6-26E. Using appropriate...Ch. 6 - Commercially available large wind turbines have...Ch. 6 - A fan with 24-in-diameter blades moves 2000 cfm...Ch. 6 - A 3-in-diameter horizontal jet of water, with...Ch. 6 - Firefighters are holding a nozzle at the end of a...Ch. 6 - A 5-cm-diameter horizontal jet of water with a...Ch. 6 - Prob. 33PCh. 6 - A 3-in-diameter horizontal water jet having a...Ch. 6 - An unloaded helicopter of mass 12,000 kg hovers at...Ch. 6 - Prob. 36PCh. 6 - Water is flowing through a 10-cm-diameter water...Ch. 6 - Water flowing in a horizontal 25-cm-diameter pipe...Ch. 6 - Prob. 39PCh. 6 - Water enters a centrifugal pump axially at...Ch. 6 - An incompressible fluid of density and viscosity ...Ch. 6 - Consider the curved duct of Prob. 6-41, except...Ch. 6 - As a follow-up to Prob. 6-41, it turns out that...Ch. 6 - Prob. 44PCh. 6 - The weight of a water tank open to the atmosphere...Ch. 6 - A sluice gate, which controls flow rate in a...Ch. 6 - A room is to be ventilated using a centrifugal...Ch. 6 - How is the angular momentum equation obtained from...Ch. 6 - Prob. 49CPCh. 6 - Prob. 50CPCh. 6 - Prob. 51CPCh. 6 - A large lawn sprinkler with two identical arms is...Ch. 6 - Prob. 53EPCh. 6 - The impeller of a centrifugal pump has inner and...Ch. 6 - Water is flowing through a 15-cm-diameter pipe...Ch. 6 - Prob. 56PCh. 6 - Repeat Prob. 6-56 for a water flow rate of 60 L/s.Ch. 6 - Prob. 58PCh. 6 - Water enters the impeller of a centrifugal pump...Ch. 6 - A lawn sprinkler with three identical antis is...Ch. 6 - Prob. 62PCh. 6 - The impeller of a centrifugal blower has a radius...Ch. 6 - An 8-cm-diameter horizontal water jet having a...Ch. 6 - Water flowing steadily at a rate of 0.16 m3/s is...Ch. 6 - Repeat Prob. 6-66 by taking into consideration the...Ch. 6 - A 16-cm diameter horizontal water jet with a speed...Ch. 6 - Water enters vertically and steadily at a rate of...Ch. 6 - Repeal Prob. 6-69 for the case of unequal anus-the...Ch. 6 - Prob. 71PCh. 6 - Prob. 72PCh. 6 - A spacecraft cruising in space at a constant...Ch. 6 - A 60-kg ice skater is standing on ice with ice...Ch. 6 - A 5-cm-diameter horizontal jet of water, with...Ch. 6 - Water is flowing into and discharging from a pipe...Ch. 6 - Indiana Jones needs So ascend a 10-m-high...Ch. 6 - Prob. 79EPCh. 6 - A walnut with a mass of 50 g requires a force of...Ch. 6 - Prob. 81PCh. 6 - Prob. 82PCh. 6 - A horizontal water jet of constant velocity V...Ch. 6 - Show that the force exerted by a liquid jet on a...Ch. 6 - Prob. 85PCh. 6 - Prob. 86PCh. 6 - Water enters a mixed flow pump axially at a rate...Ch. 6 - Prob. 88PCh. 6 - Water enters a two-armed lawn sprinkler along the...Ch. 6 - Prob. 91PCh. 6 - Prob. 92PCh. 6 - Prob. 93PCh. 6 - Prob. 94PCh. 6 - A water jet strikes a moving plate at velocity...Ch. 6 - Water flows at mass flow rate m through a 90°...Ch. 6 - Prob. 97PCh. 6 - Water shoots out of a Iar2e tank sitting a cart...Ch. 6 - Prob. 99PCh. 6 - Prob. 100PCh. 6 - Prob. 101PCh. 6 - Consider water flow through a horizontal, short...Ch. 6 - Consider water flow through a horizontal. short...Ch. 6 - Prob. 104PCh. 6 - Prob. 105PCh. 6 - Prob. 106PCh. 6 - The velocity of wind at a wind turbine is measured...Ch. 6 - The ve1ocity of wind at a wind turbine is measured...Ch. 6 - Prob. 109PCh. 6 - Prob. 110PCh. 6 - Prob. 111PCh. 6 - Consider the impeller of a centrifugal pump with a...Ch. 6 - Prob. 113PCh. 6 - Prob. 114P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Water flows steadily through the elbow, placed horizontally on the surface shown in figure. Determine the force (kN] needed to hold the elbow in place. (NOTE: Pwater = 1000 kg/m³) V½ - Sm/s 45 cm P-30 kPa P-250 kPa 25 cm V-15 m/s P3-170 kPa 20 cm 40 Yanıt:arrow_forward6-23 A reducing elbow in a horizontal pipe is used to deflect water flow by an angle 0 = 45° from the flow direction while accelerating it. The elbow discharges water into the atmo- sphere. The cross-sectional area of the elbow is 150 cm² at the inlet and 25 cm² at the exit. The elevation difference between the centers of the exit and the inlet is 40 cm. The mass of the elbow and the water in it is 50 kg. Determine the anchoring force needed to hold the elbow in place. Take the momentum- flux correction factor to be 1.03 at both the inlet and outlet. 150 cm² Water 30.0 kg/s FIGURE P6-23 25 cm² 15- 40 cmarrow_forwardA jet of water flows from left to right and hits a splitter block, as shown in the figure. Some of the jet is diverted upwards and some of it downwards. The incoming jet has a velocity U₁ = 2.3 m/s and a cross-sectional area A₁ The jet that is deflected upwards has a velocity U₂ = 0.7 m/s, a cross-sectional area A₂ = 11 cm² and is at an angle 0₂ = 30° with respect to the horizontal. The jet that is deflected downwards has a velocity U3 = 0.9 m/s, a cross-sectional area A3 = 8 cm² and is at an angle 03 = 25° with respect to the horizontal. The density of water is p = 1000 kg/m³. U₁ A₁ A₂z A3 a) Find the cross-sectional area of the incoming jet (in cm²) U₂ 0₂ 0₂ b) Find the horizontal force on the block (in Newtons) (Note: remember to convert the area of the jets from cm² to m²!) Из c) The vertical force on the block found to be F. What velocity of the incoming jet (i.e. what value of u₁) would be needed t generate a force of 4F,? (Note that you don't need to actually find F, to solve…arrow_forward
- Full part of question barrow_forwardA 9.0-cm diameter pipe contains water with a mean flow velocity of 2.0 m/s. The pipe has a 90-degree bend after which the water flows into the open air. Assume the flow is turbulent but ignore frictional energy losses. Take the density of water to be 1.0 × 10³ kg/m 3 and assume the pressure in the pipe at point 1 is atmospheric (i.e. ignore the effect of gravity). Find the magnitude and direction of the force applied to the pipe bend by the flowing water. V₁ 2.0 m/s = 2 P atmarrow_forwardAt what maximum speed does a compressed air torpedo move, which expells 18 kg of air every second at a speed of 118 m/s? The force of water resistance is proportional to the square of the velocity and is equal to 480 N at a speed of 21 m/s. (The solutiom is 44 m/s)arrow_forward
- Prob6 conveyor belt discharges gravel into a barge as shown at a rate of 40 m³/min. If the gravel specific weight 18860 N/m³ 120 lbf, what is the tension in the hawser that secures the barge to the dock? Conveyor belt F-10 ft/s Hawser, Dock Gravel Barge Gravel 20⁰ +arrow_forward(b) A 90° elbow in a horizontal pipe is used to direct water flow upward at a rate of 40 kg/s, as shown in the Figure 2. The diameter of the entire elbow is 10 cm. The elbow discharges water into the atmosphere, and thus the pressure at the exit is the local atmospheric pressure. The elevation difference between the centres of the exit and the inlet of the elbow is 50 cm. The weight of the elbow and the water in it is considered to be negligible. i) Draw an appropriate control volume for the flow and state all your assumptions clearly. ii) Determine the gage pressure at the centre of the inlet of the elbow iii) Determine the anchoring force needed to hold the elbow in place 50 cm Water 40 kg/s Figure 2arrow_forwardWater with density Pwater = 1000 kg/m³ flows through a pipe, composed of two reduced in size sections, as shown on the figure. The two sections are Ilinked with a flange connection, and the corresponding diameters are D, = 8 cm and D, = 5 cm. If the velocity in cross-section 1 is v, = 5 m/s, and the readings of the connected liquid manometer is h = 60 cm, determine the reaction force acting over the flange connection. The manometric fluid is mercury, with density Pa-101kPa %3D Mercury Pmercury = 13600 kg/m³.arrow_forward
- 6-16C A constant-velocity horizontal water jet from a stationary nozzle impinges normally on a vertical flat plate that rides on a nearly frictionless track. As the water jet hits the plate, it begins to move due to the water force. Will the acceleration of the plate remain constant or change? Explain. Nozzle Water jetarrow_forward3. (a) A nozzle of inlet area A₁ and exit area A2 exhausts to atmosphere. A fluid of density p enters the nozzle with pressure p₁ (gauge) and velocity u₁. Show that the force trying to separate the nozzle from the pipe is given by 2 F = P₁A₁ - pA₁u₁² whether the nozzle is frictionless or not. A₁ A₂ -1)arrow_forwardWater flowing steadily at a rate of 0.16 m3/s is deflected downward by an angled elbow as shown. For D = 30 cm, d = 10 cm, and h = 50 cm, determine the force acting on the flanges of the elbow and the angle its line of action makes with the horizontal. Take the internal volume of the elbow to be 0.03 m3 and disregard the weight of the elbow material and the frictional effects.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License