Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259877827
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 37P
Water is flowing through a 10-cm-diameter water pipe at a rate of 0.1 m3/s. Now a diffuser with an outlet diameter of 20 cm is bolted to the pipe in order to slow down water, as shown in Fig. P6-37. Disregarding frictional effects, determine the force exerted on the bolts due to the water flow.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A 90° elbow in a horizontal pipe is used to direct water flow upward at a rate m of 37 kg/s. The diameter of the
entire elbow is 10 cm. The elbow discharges water into the atmosphere, and thus the pressure at the exit is
the local atmospheric pressure. The elevation difference between the centers of the exit and the inlet of the
elbow is 50 cm. The weight of the elbow and the water in it is considered to be negligible. Take the density of
water to be 1000 kg/m³ and the momentum-flux correction factor to be 1.03 at both the inlet and the outlet.
Water
m kg/s
O
50 cm
Determine the anchoring force needed to hold the elbow in place.
The anchoring force needed to hold the elbow in place is
The resultant direction of the force is
155
429 N.
Consider water flow through a horizontal, short garden hose at a rate of 30 kg/min. The velocity at the inlet is 1.3 m/s and that at the outlet is 11.75 m/s. The hose makes a 180° turn before the water is discharged. Disregard the weight of the hose and water. Taking the momentum-flux correction factor to be 1.08 at both the inlet and the outlet, the anchoring force (in N; hint: the answer is a negative number) required to hold the hose in place is ?
plzzzz help meeee
Chapter 6 Solutions
Fluid Mechanics: Fundamentals and Applications
Ch. 6 - Express Newton’s second law of motion for rotating...Ch. 6 - Express Newton’s first, second, and third laws.Ch. 6 - Is momentum a vector? If so, in what direction...Ch. 6 - Express the conservation of momentum principle....Ch. 6 - How do surface forces arise in the momentum...Ch. 6 - Explain the importance of the Reynolds transport...Ch. 6 - What is the importance of the momentum-flux...Ch. 6 - Write the momentum equation for steady...Ch. 6 - In the application of the momentum equation,...Ch. 6 - Two firefighters are fighting a fire with...
Ch. 6 - A rocket in space (no friction or resistance to...Ch. 6 - Describe in terms of momentum and airflow how a...Ch. 6 - Does it take more, equal, or less power for a...Ch. 6 - In a given location, would a helicopter require...Ch. 6 - Describe body forces and surface forces, and...Ch. 6 - A constant-velocity horizontal water jet from a...Ch. 6 - A horizontal water jet of constant velocity V from...Ch. 6 - A horizontal water jet from a nozzle of constant...Ch. 6 - A 2.5-cm-diameter horizontal water jet with a...Ch. 6 - A 90 elbow in a horizontal pipe is used to direct...Ch. 6 - Repeat Prob. 6-20 for the case of another...Ch. 6 - A horizontal water jet impinges against a vertical...Ch. 6 - Water enters a 7-cm-diameter pipe steadily with a...Ch. 6 - A reducing elbow in a horizontal pipe is used to...Ch. 6 - Repeat Prob. 6-24 for the case of = 125°.Ch. 6 - A 100-ft3/s water jet is moving in the positive...Ch. 6 - Reconsider Prob. 6-26E. Using appropriate...Ch. 6 - Commercially available large wind turbines have...Ch. 6 - A fan with 24-in-diameter blades moves 2000 cfm...Ch. 6 - A 3-in-diameter horizontal jet of water, with...Ch. 6 - Firefighters are holding a nozzle at the end of a...Ch. 6 - A 5-cm-diameter horizontal jet of water with a...Ch. 6 - Prob. 33PCh. 6 - A 3-in-diameter horizontal water jet having a...Ch. 6 - An unloaded helicopter of mass 12,000 kg hovers at...Ch. 6 - Prob. 36PCh. 6 - Water is flowing through a 10-cm-diameter water...Ch. 6 - Water flowing in a horizontal 25-cm-diameter pipe...Ch. 6 - Prob. 39PCh. 6 - Water enters a centrifugal pump axially at...Ch. 6 - An incompressible fluid of density and viscosity ...Ch. 6 - Consider the curved duct of Prob. 6-41, except...Ch. 6 - As a follow-up to Prob. 6-41, it turns out that...Ch. 6 - Prob. 44PCh. 6 - The weight of a water tank open to the atmosphere...Ch. 6 - A sluice gate, which controls flow rate in a...Ch. 6 - A room is to be ventilated using a centrifugal...Ch. 6 - How is the angular momentum equation obtained from...Ch. 6 - Prob. 49CPCh. 6 - Prob. 50CPCh. 6 - Prob. 51CPCh. 6 - A large lawn sprinkler with two identical arms is...Ch. 6 - Prob. 53EPCh. 6 - The impeller of a centrifugal pump has inner and...Ch. 6 - Water is flowing through a 15-cm-diameter pipe...Ch. 6 - Prob. 56PCh. 6 - Repeat Prob. 6-56 for a water flow rate of 60 L/s.Ch. 6 - Prob. 58PCh. 6 - Water enters the impeller of a centrifugal pump...Ch. 6 - A lawn sprinkler with three identical antis is...Ch. 6 - Prob. 62PCh. 6 - The impeller of a centrifugal blower has a radius...Ch. 6 - An 8-cm-diameter horizontal water jet having a...Ch. 6 - Water flowing steadily at a rate of 0.16 m3/s is...Ch. 6 - Repeat Prob. 6-66 by taking into consideration the...Ch. 6 - A 16-cm diameter horizontal water jet with a speed...Ch. 6 - Water enters vertically and steadily at a rate of...Ch. 6 - Repeal Prob. 6-69 for the case of unequal anus-the...Ch. 6 - Prob. 71PCh. 6 - Prob. 72PCh. 6 - A spacecraft cruising in space at a constant...Ch. 6 - A 60-kg ice skater is standing on ice with ice...Ch. 6 - A 5-cm-diameter horizontal jet of water, with...Ch. 6 - Water is flowing into and discharging from a pipe...Ch. 6 - Indiana Jones needs So ascend a 10-m-high...Ch. 6 - Prob. 79EPCh. 6 - A walnut with a mass of 50 g requires a force of...Ch. 6 - Prob. 81PCh. 6 - Prob. 82PCh. 6 - A horizontal water jet of constant velocity V...Ch. 6 - Show that the force exerted by a liquid jet on a...Ch. 6 - Prob. 85PCh. 6 - Prob. 86PCh. 6 - Water enters a mixed flow pump axially at a rate...Ch. 6 - Prob. 88PCh. 6 - Water enters a two-armed lawn sprinkler along the...Ch. 6 - Prob. 91PCh. 6 - Prob. 92PCh. 6 - Prob. 93PCh. 6 - Prob. 94PCh. 6 - A water jet strikes a moving plate at velocity...Ch. 6 - Water flows at mass flow rate m through a 90°...Ch. 6 - Prob. 97PCh. 6 - Water shoots out of a Iar2e tank sitting a cart...Ch. 6 - Prob. 99PCh. 6 - Prob. 100PCh. 6 - Prob. 101PCh. 6 - Consider water flow through a horizontal, short...Ch. 6 - Consider water flow through a horizontal. short...Ch. 6 - Prob. 104PCh. 6 - Prob. 105PCh. 6 - Prob. 106PCh. 6 - The velocity of wind at a wind turbine is measured...Ch. 6 - The ve1ocity of wind at a wind turbine is measured...Ch. 6 - Prob. 109PCh. 6 - Prob. 110PCh. 6 - Prob. 111PCh. 6 - Consider the impeller of a centrifugal pump with a...Ch. 6 - Prob. 113PCh. 6 - Prob. 114P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- (b) A 90° elbow in a horizontal pipe is used to direct water flow upward at a rate of 40 kg/s, as shown in the Figure 2. The diameter of the entire elbow is 10 cm. The elbow discharges water into the atmosphere, and thus the pressure at the exit is the local atmospheric pressure. The elevation difference between the centres of the exit and the inlet of the elbow is 50 cm. The weight of the elbow and the water in it is considered to be negligible. i) Draw an appropriate control volume for the flow and state all your assumptions clearly. ii) Determine the gage pressure at the centre of the inlet of the elbow iii) Determine the anchoring force needed to hold the elbow in place 50 cm Water 40 kg/s Figure 2arrow_forwardIn a community event, a game of 'water resistance' is played by a group of people. Considering a stream of water jet shooting out of a water hose with a diameter of 50 cm. The water exits the hose at a velocity of 10 m/s and impact on a flat metal plate placed vertically at a normal angle to the water. Assume the density of water to be at 1000 kg/m³. Plae Fadulta Dws 1. Determine the force exerted by the water jet on the metal plate 2. If there are two adults standing behind the metal plate, holding the plate at an angle of 20° below horizontal level and the force exerted by the adults on the plate is at 300N, measure the magnitude and direction of the resultant force. Will the adults able to move towards the water jet and not pushed backwards by the water jet?arrow_forwardWater flows into a sink as shown in the figure below at a rate of 0.5m^3/hr. Determine the average velocity through each of the three 1 cm diameter overflow holes if the drain is closed and the water level in the sink remains constantarrow_forward
- A pump increases the pressure of water from 100 kPa to 1.2 MPa at a rate of 0.5 m3 /min. The inlet and outlet diameters are identical and there is no change in elevation across the pump. If the efficiency of the pump is 77 percent, the power supplied to the pump is (a) 11.9 kW (b) 12.6 kW (c) 13.3 kW (d ) 14.1 kW (e) 15.5 kWarrow_forwardThe force that drives the flow of fluids is the pressure difference; a pump works by raising thepressure of a fluid (converting it into mechanical work of its axis and energy of flow). It is determined thatA gasoline pump consumes 3.8 KW of electrical power when it is working. If the difference ofpressures between pump discharge and suction is 7 KPa, and the changes in speed and head aredespicable.Determine the maximum possible volumetric flow rate of the gasoline. (see img)arrow_forwardWater is flowing through a 15-cm-diameter pipe that consists of a 3-m-long vertical and 2-m-long horizontal section with a 90° elbow at the exit to force the water to be discharged downward, as shown, in the vertical direction. Water discharges to atmospheric air at a velocity of 5 m/s, and the mass of the pipe section when filled with water is 17 kg per meter length. Determine the moment acting at the intersection of the vertical and horizontal sections of the pipe (point A). What would your answer be if the flow were discharged upward instead of downward?arrow_forward
- not an assingment or assesed question its a tutorialarrow_forwardA 3-in.-diameter horizontal water jet having a velocity of 97 ft/s strikes a curved plate, which deflects the water 180° at the same speed. Ignoring the frictional effects, determine the force required to hold the plate against the water stream. Take the density of water to be 62.4 lbm/ft³ Water jet. Vius- VIUS 13 in. The force required to hold the plate against the water stream is lbf.arrow_forward6-38 Water flowing in a horizontal 25-cm-diameter pipe at 8 m/s and 300 kPa gage enters a 90° bend reducing section, which connects to a 15-cm-diameter vertical pipe. The inlet of the bend is 50 cm above the exit. Neglecting any frictional and gravitational effects, determine the net resultant force exerted on the reducer by the water. Take the momentum-flux correction factor to be 1.04. Water 8 m/s 25 cm 15 cmarrow_forward
- Water is flowing through a 15-cm-diameter pipe that consists of a 3-m-long vertical and 2-m-long horizontal section with a 90° elbow at the exit to force the water to be discharged downward, as shown in Fig. P6–55, in the vertical direction. Water discharges to atmospheric air at a velocity of 5 m/s, and the mass of the pipe section when filled with water is 17 kg per meter length. Determine the moment acting at the intersection of the vertical and horizontal sections of the pipe (point A). What would your answer be if the flow were discharged upward instead of downward?arrow_forwardA garden hose attached with a nozzle is used to fill a 20 Liters bucket. The inner diameter of the hose is d %3D8 cm, and it reduces tod = 5.16 cm at the nozzle exit. If it takes 50 seconds to fill the bucket with hose nozzle water, determine average velocity (m/s) of water at the nozzle exit. Nozzle Garden Bucket hosearrow_forwardA projectile-like object with maximum diameter of 20 cm is placed at the exit of a 25-cm-diameterpipe. Water flows through the pipe. At the upstream location 1, the velocity is uniform and equalto 2 m/s. The water exits to the atmosphere where the pressure is 100 kPa. Find the force requiredto hold the object in place. Be sure to state your assumptions.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License