Chin-ups . While doing a chin-up, a man lifts his body 0.40 m. (a) How much work must the man do per kilogram of body mass? (b) The muscles involved in doing a chin-up can generate about 70 J of work per kilogram of muscle mass. If the man can just barely do a 0.40-m chin-up, what percentage of his body’s mass do these muscles constitute? (For comparison, the total percentage of muscle in a typical 70-kg man with 14% body fat is about 43%.) (c) Repeat part (b) for the man’s young son, who has arms half as long as his father's but whose muscles can also generate 70 J of work per kilogram of muscle mass. (d) Adults and children have about the same percentage of muscle in their bodies. Explain why children can commonly do chin-ups more easily than their fathers.
Chin-ups . While doing a chin-up, a man lifts his body 0.40 m. (a) How much work must the man do per kilogram of body mass? (b) The muscles involved in doing a chin-up can generate about 70 J of work per kilogram of muscle mass. If the man can just barely do a 0.40-m chin-up, what percentage of his body’s mass do these muscles constitute? (For comparison, the total percentage of muscle in a typical 70-kg man with 14% body fat is about 43%.) (c) Repeat part (b) for the man’s young son, who has arms half as long as his father's but whose muscles can also generate 70 J of work per kilogram of muscle mass. (d) Adults and children have about the same percentage of muscle in their bodies. Explain why children can commonly do chin-ups more easily than their fathers.
Chin-ups. While doing a chin-up, a man lifts his body 0.40 m. (a) How much work must the man do per kilogram of body mass? (b) The muscles involved in doing a chin-up can generate about 70 J of work per kilogram of muscle mass. If the man can just barely do a 0.40-m chin-up, what percentage of his body’s mass do these muscles constitute? (For comparison, the total percentage of muscle in a typical 70-kg man with 14% body fat is about 43%.) (c) Repeat part (b) for the man’s young son, who has arms half as long as his father's but whose muscles can also generate 70 J of work per kilogram of muscle mass. (d) Adults and children have about the same percentage of muscle in their bodies. Explain why children can commonly do chin-ups more easily than their fathers.
two satellites are in circular orbits around the Earth. Satellite A is at an altitude equal to the Earth's radius, while satellite B is at an altitude equal to twice the Earth's radius. What is the ratio of their periods, Tb/Ta
Fresnel lens: You would like to design a 25 mm diameter blazed Fresnel zone plate with a first-order power of
+1.5 diopters. What is the lithography requirement (resolution required) for making this lens that is designed
for 550 nm? Express your answer in units of μm to one decimal point.
Fresnel lens: What would the power of the first diffracted order of this lens be at wavelength of 400 nm?
Express your answer in diopters to one decimal point.
Eye: A person with myopic eyes has a far point of 15 cm. What power contact lenses does she need to correct
her version to a standard far point at infinity? Give your answer in diopter to one decimal point.
Paraxial design of a field flattener. Imagine your optical system has Petzal curvature of the field with radius
p. In Module 1 of Course 1, a homework problem asked you to derive the paraxial focus shift along the axis
when a slab of glass was inserted in a converging cone of rays. Find or re-derive that result, then use it to
calculate the paraxial radius of curvature of a field flattener of refractive index n that will correct the observed
Petzval. Assume that the side of the flattener facing the image plane is plano. What is the required radius of
the plano-convex field flattener? (p written as rho )
Chapter 6 Solutions
University Physics with Modern Physics (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.