Loose Leaf For Introduction To Chemical Engineering Thermodynamics
Loose Leaf For Introduction To Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259878084
Author: Smith Termodinamica En Ingenieria Quimica, J.m.; Van Ness, Hendrick C; Abbott, Michael; Swihart, Mark
Publisher: McGraw-Hill Education
Question
Book Icon
Chapter 6, Problem 6.60P
Interpretation Introduction

Interpretation:

Determine the final temperature and work produced of the compressedn-butane gas, compressed isentropically in a steady state process.

Concept Introduction:

The entropy change by appropriate generalized correlations is

  ΔS=T1T2CPigdTTRlnP2P1+S2RS1R....(2)

Expert Solution & Answer
Check Mark

Answer to Problem 6.60P

Temperature is

  T=381.317K

Work done is

  W=6332.15Jmol

Explanation of Solution

Given information:

It is given that n-butane gas compressed isentropically from 1bar and 323.15K to 7.8bar .

Process is isentropically, so ΔS=0

From equation (2),

  ΔS=T1T2CPigdTTRln P 2 P 1+S2RS1RRT1T2CP igRdTTRlnP2P1+S2RS1R=0RT1T2CPigRdTT=RlnP2P1S2R+S1R

Initial state

For pure species n-butane, the properties can be written down using Appendix B, Table B.1

ω=0.2, Tc=425.1K, Pc=37.96bar, ZC=0.276

  Tr=T1TcTr=323.15K425.1K=0.7602

  Pr=P1PcPr=1bar37.96bar=0.0263

So, at above values of Tr and Pr, The values of ( H R)RTC0 and ( H R)RTC1 can be written from Appendix D

Tr=0.76 lies between reduced temperatures Tr=0.75 and Tr=0.8 and Pr=0.026 lies in between reduced pressures Pr=0.01 and Pr=0.05 .

At Tr=0.75 and Pr=0.01

( H R)RTC0=0.017, ( S R)R0=0.015

At Tr=0.75 and Pr=0.05

( H R)RTC0=0.088, ( S R)R0=0.078

At Tr=0.8 and Pr=0.01

( H R)RTC0=0.015, ( S R)R0=0.013

At Tr=0.8 and Pr=0.05

( H R)RTC0=0.078, ( S R)R0=0.064

And

At Tr=0.75 and Pr=0.01

( H R)RTC1=0.027, ( S R)R1=0.029

At Tr=0.75 and Pr=0.05

( H R)RTC1=0.142, ( S R)R1=0.156

At Tr=0.8 and Pr=0.01

( H R)RTC1=0.021, ( S R)R1=0.022

At Tr=0.8 and Pr=0.05

( H R)RTC1=0.11, ( S R)R1=0.116

Applying linear interpolation of two independent variables, From linear double interpolation, if M is the function of two independent variable X and Y then the value of quantity M at two independent variables X and Y adjacent to the given values are represented as follows:

  X1XX2Y1M1,1M1,2YM=?Y2M2,1M2,2

  M=[( X 2 X X 2 X 1 )M1,1+( X X 1 X 2 X 1 )M1,2]Y2YY2Y1+[( X 2 X X 2 X 1 )M2,1+( X X 1 X 2 X 1 )M2,2]YY1Y2Y1( H R )RTC0=[( 0.050.026 0.050.01)×0.017+( 0.0260.01 0.050.01)×0.088]×0.80.760.80.75+[( 0.050.026 0.050.01)×0.015+( 0.0260.01 0.050.01)×0.078]×0.760.750.80.75( H R )RTC0=0.04436

  M=[( X 2 X X 2 X 1 )M1,1+( X X 1 X 2 X 1 )M1,2]Y2YY2Y1+[( X 2 X X 2 X 1 )M2,1+( X X 1 X 2 X 1 )M2,2]YY1Y2Y1( S R )R0=[( 0.050.026 0.050.01)×0.015+( 0.0260.01 0.050.01)×0.078]×0.80.760.80.75+[( 0.050.026 0.050.01)×0.013+( 0.0260.01 0.050.01)×0.064]×0.760.750.80.75( S R )R0=0.03884

And

  M=[( X 2 X X 2 X 1 )M1,1+( X X 1 X 2 X 1 )M1,2]Y2YY2Y1+[( X 2 X X 2 X 1 )M2,1+( X X 1 X 2 X 1 )M2,2]YY1Y2Y1( H R )RTC1=[( 0.050.026 0.050.01)×0.027+( 0.0260.01 0.050.01)×0.142]×0.80.760.80.75+[( 0.050.026 0.050.01)×0.021+( 0.0260.01 0.050.01)×0.110]×0.760.750.80.75( H R )RTC1=0.06972

  M=[( X 2 X X 2 X 1 )M1,1+( X X 1 X 2 X 1 )M1,2]Y2YY2Y1+[( X 2 X X 2 X 1 )M2,1+( X X 1 X 2 X 1 )M2,2]YY1Y2Y1( S R )R1=[( 0.050.026 0.050.01)×0.029+( 0.0260.01 0.050.01)×0.156]×0.80.760.80.75+[( 0.050.026 0.050.01)×0.022+( 0.0260.01 0.050.01)×0.116]×0.760.750.80.75( S R )R1=0.07576

Now, from equation,

  H1R=(H1R)0+ω(H1R)1

Or

  H1RRTC=( H 1 R )0RTC+ω( H 1 R )1RTCH1RRTC=0.04436+0.2×0.06972H1RRTC=0.058304H1R=0.058304×8.314Jmol K×425.1KH1R=206.063Jmol

And

  S1R=(S1R)0+ω(S1R)1

Or

  S1RR=( S 1 R )0R+ω( S 1 R )1RS1RR=0.03884+0.2×0.07576S1RR=0.053992S1R=0.053992×8.314Jmol KS1R=0.4489JmolK

Considering at final state gas is an ideal gas.

Hence, H2R=0 and S2R=0

Now,

  T1T2 C P igRdTT=ln P 2 P 1S2RR+S1RRT1T2CP igRdTT=ln7.810+(0.4489JmolK)8.314Jmol KT1T2CPigRdTT=2

Hence,

  T1T2CPigRdTT=[A+{BT0+(CT02+Dτ2T02)(τ+12)}(τ1lnτ)]×lnτ

  τ=TT0

Values of constants forn-butane in above equation are given in appendix C table C.1 and noted down below:

  iA103B106C105Dnbutane1.93536.91511.4020

  τ=TT0

  T1T2 C P igRdTT=[A+{BT0+(CT02+D τ 2 T 0 2 )( τ+12)}(τ1lnτ)]×lnτT1T2CP igRdTT=[1.935+{36.915×103×323.15+(11.402×106×323.152+0 τ 2× 323.15 2)(τ+12)}(τ1lnτ)]×lnτ2=[1.935+{36.915×103×323.15+(11.402×106×323.152)(τ+12)}(τ1lnτ)]×lnττ=1.18

  τ=TT01.18=T323.15KT=381.317K

Now, for work produced

  W=ΔH

And enthalpy change by generalized correlations is given by,

  ΔH=T1T2CPigdT+H2RH1R

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)

Where τ=TT0

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)T0TΔCPRdT=1.935×323.15×(1.181)+36.915×1032×323.152×(1.1821)+11.402×1063×323.153(1.1831)T0TΔCPRdT=786.41K

Hence,

  W=ΔH=RT1T2 C P igRdT+H2RH1RW=8.314Jmol K×786.41K+0(206.063Jmol)W=6332.15Jmol

Conclusion

Temperature is

  T=381.317K

Work done is

  W=6332.15Jmol

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
determine the binary diffusion coefficient of CO2 in air at a) 200 K and 1 atm b)400K and 0.5atm c)600 K and 5 atm
Using Rachford-Rice in Excel, analyze flash distillation of the following feed stream at P = 1000 kPa and T = 30°C. Feed (1000 kmol/hr) is composed of ethane (25%), propane (30%), propylene (5%) and n-hexane (40%):a. What is the composition and flowrate of the vapor stream? [V should be 196 kmol/hr when solved]b. What is the composition and flowrate of the liquid stream?c. What fraction of the n-hexane (feed) ends up in the vapor phase?d. What fraction of the ethane (feed) ends up in the liquid phase?
A 40 mol % ethanol 60 mol % water mixture at 60 °C and 1 atm is heated. Using Figure 2-3  answer the following:a. At what temperature does the mixture first begin to boil? What is the composition of the first bubble of vapor?b. At what temperature would it stop boiling (assume no material is removed)? What is the composition of the last droplet of liquid?c. At 82 °C, what fraction is liquid? [should be 0.6]d. When 90% has been vaporized, what is the temperature, and what are the liquid and vapor compositions?

Chapter 6 Solutions

Loose Leaf For Introduction To Chemical Engineering Thermodynamics

Ch. 6 - Prob. 6.11PCh. 6 - Prob. 6.12PCh. 6 - Prob. 6.13PCh. 6 - Prob. 6.14PCh. 6 - Prob. 6.15PCh. 6 - Prob. 6.16PCh. 6 - Prob. 6.17PCh. 6 - Prob. 6.18PCh. 6 - Prob. 6.19PCh. 6 - Prob. 6.20PCh. 6 - Prob. 6.21PCh. 6 - Prob. 6.22PCh. 6 - Prob. 6.23PCh. 6 - Prob. 6.24PCh. 6 - Prob. 6.25PCh. 6 - Prob. 6.26PCh. 6 - Prob. 6.27PCh. 6 - What is the mole fraction of water vapor in air...Ch. 6 - Prob. 6.29PCh. 6 - Prob. 6.30PCh. 6 - Prob. 6.31PCh. 6 - Prob. 6.32PCh. 6 - Prob. 6.33PCh. 6 - Prob. 6.34PCh. 6 - Prob. 6.35PCh. 6 - Prob. 6.36PCh. 6 - Prob. 6.37PCh. 6 - Prob. 6.38PCh. 6 - Prob. 6.39PCh. 6 - Prob. 6.40PCh. 6 - Prob. 6.41PCh. 6 - Prob. 6.42PCh. 6 - Prob. 6.43PCh. 6 - Prob. 6.44PCh. 6 - Prob. 6.45PCh. 6 - Prob. 6.46PCh. 6 - Prob. 6.47PCh. 6 - Prob. 6.48PCh. 6 - Prob. 6.49PCh. 6 - Prob. 6.50PCh. 6 - Prob. 6.51PCh. 6 - Prob. 6.52PCh. 6 - Prob. 6.53PCh. 6 - Prob. 6.54PCh. 6 - Prob. 6.55PCh. 6 - Prob. 6.56PCh. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - Prob. 6.59PCh. 6 - Prob. 6.60PCh. 6 - Prob. 6.61PCh. 6 - Prob. 6.62PCh. 6 - Prob. 6.63PCh. 6 - Prob. 6.64PCh. 6 - Prob. 6.65PCh. 6 - Prob. 6.66PCh. 6 - Prob. 6.67PCh. 6 - Prob. 6.68PCh. 6 - Prob. 6.69PCh. 6 - Prob. 6.71PCh. 6 - Prob. 6.72PCh. 6 - Prob. 6.73PCh. 6 - Prob. 6.74PCh. 6 - Prob. 6.75PCh. 6 - Prob. 6.76PCh. 6 - Prob. 6.77PCh. 6 - Prob. 6.78PCh. 6 - Prob. 6.79PCh. 6 - Prob. 6.80PCh. 6 - Prob. 6.81PCh. 6 - The temperature dependence of the second virial...Ch. 6 - Prob. 6.83PCh. 6 - Prob. 6.84PCh. 6 - Prob. 6.85PCh. 6 - Prob. 6.86PCh. 6 - Prob. 6.87PCh. 6 - Prob. 6.88PCh. 6 - Prob. 6.89PCh. 6 - Prob. 6.90PCh. 6 - Prob. 6.91PCh. 6 - Prob. 6.92PCh. 6 - Prob. 6.93PCh. 6 - Prob. 6.94PCh. 6 - Prob. 6.95PCh. 6 - Prob. 6.96PCh. 6 - Prob. 6.97PCh. 6 - Prob. 6.98PCh. 6 - Prob. 6.99PCh. 6 - Prob. 6.100P
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The