Loose Leaf For Introduction To Chemical Engineering Thermodynamics
Loose Leaf For Introduction To Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259878084
Author: Smith Termodinamica En Ingenieria Quimica, J.m.; Van Ness, Hendrick C; Abbott, Michael; Swihart, Mark
Publisher: McGraw-Hill Education
Question
Book Icon
Chapter 6, Problem 6.59P

(a)

Interpretation Introduction

Interpretation:

Determine the temperature of the expanded ethane gas, expands isentropically in a turbine and work produced if properties of ethane are calculated by equations for an ideal gas.

Concept Introduction:

The entropy change for an ideal gas is calculated by,

  ΔS=T1T2CPigdTTRlnP2P1.     ...(1)

(a)

Expert Solution
Check Mark

Answer to Problem 6.59P

Temperature is

  T=367.4K

Work done is

  W=8746.9Jmol

Explanation of Solution

Given information:

It is given that ethane expands isentropically from 30bar and 493.15Kto 2.6bar .

Process is isentropically, so ΔS=0

From equation (1)

  ΔS=T1T2CPigdTTRln P 2 P 10=RT1T2CP igRdTTRlnP2P1T1T2CPigRdTT=lnP2P1

wherE

  T1T2CPigRdTT=[A+{BT0+(CT02+Dτ2T02)(τ+12)}(τ1lnτ)]×lnτ

  τ=TT0

Values of constants for ethane in above equation are given in appendix C table C.1 and noted down below:

  iA103B106C105DEthane1.13119.2255.5610

  T1T2 C P igRdTT=[A+{BT0+(CT02+D τ2 T0 2 )( τ+12)}(τ1lnτ)]×lnτT1T2CP igRdTT=[1.131+{19.225×103×493.15+(5.561×106×493.152+0 τ 2× 493.15 2)(τ+12)}(τ1lnτ)]×lnτlnP2P1=[1.131+{19.225×103×493.15+(5.561×106×493.152+0 τ 2× 493.15 2)(τ+12)}(τ1lnτ)]×lnτln2.630=[1.131+{19.225×103×493.15+(5.561×106×493.152)(τ+12)}(τ1lnτ)]×lnττ=0.745

  τ=TT00.745=T493.15KT=367.4K

For work produced

  W=ΔH for ideal gas

And for ideal gas

  ΔH=T1T2CPigdTΔH=RT1T2CP igRdT

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)

Where τ=TT0

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)T0TΔCPRdT=1.131×493.15×(0.7451)+19.225×1032×493.152×(0.74521)+5.561×1063×493.153(0.74531)T0TΔCPRdT=1052.07K

Hence,

  W=ΔH=RT1T2 C P igRdTW=8.314Jmol K×1052.07KW=8746.9Jmol

(b)

Interpretation Introduction

Interpretation:

Determine the temperature of the expanded ethane gas, expands isentropically in a turbine and work produced if properties of ethylene are calculated by appropriate generalized correlations.

Concept Introduction:

The entropy change by appropriate generalized correlations is

  ΔS=T1T2CPigdTTRlnP2P1+S2RS1R.     ...(2)

(b)

Expert Solution
Check Mark

Answer to Problem 6.59P

Temperature is

  T=362.56K

Work done is

  W=8453.15Jmol

Explanation of Solution

Given information:

It is given that ethane expands isentropically from 30bar and 493.15Kto 2.6bar .

Process is isentropically, so ΔS=0

From equation (2),

  ΔS=T1T2CPigdTTRln P 2 P 1+S2RS1RRT1T2CP igRdTTRlnP2P1+S2RS1R=0RT1T2CPigRdTT=RlnP2P1S2R+S1R

Initial statE

For pure species ethane, the properties can be written down using Appendix B, Table B.1

ω=0.1, Tc=305.3K, Pc=48.72bar, ZC=0.279

  Tr=T1TcTr=493.15K305.3K=1.615

  Pr=P1PcPr=30bar48.72bar=0.61576

So, at above values of Tr and Pr, The values of ( H R)RTC0 and ( H R)RTC1 can be written from Appendix D

Tr=1.615 lies between reduced temperatures Tr=1.6and Tr=1.7 and Pr=0.61576 lies in between reduced pressures Pr=0.6 and Pr=0.8 .

At Tr=1.6 and Pr=0.6

( H R)RTC0=0.261, ( S R)R0=0.12

At Tr=1.6 and Pr=0.8

( H R)RTC0=0.35, ( S R)R0=0.162

At Tr=1.7 and Pr=0.6

( H R)RTC0=0.231, ( S R)R0=0.102

At Tr=1.7 and Pr=0.8

( H R)RTC0=0.309, ( S R)R0=0.137

And

At Tr=1.6 and Pr=0.6

( H R)RTC1=0.013, ( S R)R1=0.057

At Tr=1.6 and Pr=0.8

( H R)RTC1=0.011, ( S R)R1=0.073

At Tr=1.7 and Pr=0.6

( H R)RTC1=0.009, ( S R)R1=0.044

At Tr=1.7 and Pr=0.8

( H R)RTC1=0.017, ( S R)R1=0.056

Applying linear interpolation of two independent variables, From linear double interpolation, if M is the function of two independent variable X and Y then the value of quantity M at two independent variables X and Y adjacent to the given values are represented as follows:

  X1XX2Y1M1,1M1,2YM=?Y2M2,1M2,2

  M=[( X2 X X2 X1 )M1,1+( XX1 X2 X1 )M1,2]Y2YY2Y1+[( X2 X X2 X1 )M2,1+( XX1 X2 X1 )M2,2]YY1Y2Y1( HR )RTC0=[( 0.80.61576 0.80.6)×0.261+( 0.615760.6 0.80.6)×0.35]×1.71.6151.71.6+[( 0.80.61576 0.80.6)×0.231+( 0.615760.6 0.80.6)×0.309]×1.6151.61.71.6( HR )RTC0=0.263

  M=[( X2 X X2 X1 )M1,1+( XX1 X2 X1 )M1,2]Y2YY2Y1+[( X2 X X2 X1 )M2,1+( XX1 X2 X1 )M2,2]YY1Y2Y1( SR )R0=[( 0.80.61576 0.80.6)×0.12+( 0.615760.6 0.80.6)×0.162]×1.71.6151.71.6+[( 0.80.61576 0.80.6)×0.102+( 0.615760.6 0.80.6)×0.137]×1.6151.61.71.6( SR )R0=0.1205

And

  M=[( X2 X X2 X1 )M1,1+( XX1 X2 X1 )M1,2]Y2YY2Y1+[( X2 X X2 X1 )M2,1+( XX1 X2 X1 )M2,2]YY1Y2Y1( HR )RTC1=[( 0.80.61576 0.80.6)×0.013+( 0.615760.6 0.80.6)×0.011]×1.71.6151.71.6+[( 0.80.61576 0.80.6)×0.009+( 0.615760.6 0.80.6)×0.017]×1.6151.61.71.6( HR )RTC1=0.0095

  M=[( X2 X X2 X1 )M1,1+( XX1 X2 X1 )M1,2]Y2YY2Y1+[( X2 X X2 X1 )M2,1+( XX1 X2 X1 )M2,2]YY1Y2Y1( SR )R1=[( 0.80.61576 0.80.6)×0.057+( 0.615760.6 0.80.6)×0.073]×1.71.6151.71.6+[( 0.80.61576 0.80.6)×0.044+( 0.615760.6 0.80.6)×0.056]×1.6151.61.71.6( SR )R1=0.056

Now, from equation,

  H1R=(H1R)0+ω(H1R)1

Or

  H1RRTC=( H 1 R)0RTC+ω( H 1 R)1RTCH1RRTC=0.263+0.1×0.0095H1RRTC=0.26395H1R=0.26395×8.314Jmol K×305.3KH1R=669.97Jmol

And

  S1R=(S1R)0+ω(S1R)1

Or

  S1RR=( S 1 R)0R+ω( S 1 R)1RS1RR=0.1205+0.1×0.056S1RR=0.1261S1R=0.1261×8.314Jmol KS1R=1.048JmolK

Final state

Final state temperature is calculated in part (a), T=367.4K

  iA103B106C105DEthane1.13119.2255.5610

  Tr=T2TcTr=367.4K305.3K=1.204

  Pr=P2PcPr=2.6bar48.72bar=0.0534

So, at above values of Tr and Pr, The values of ( H R)RTC0 and ( H R)RTC1 can be written from Appendix D

Tr=1.204 lies between reduced temperatures Tr=1.2and Tr=1.3 and Pr=0.0534 lies in between reduced pressures Pr=0.05 and Pr=0.1 .

At Tr=1.2 and Pr=0.05

( H R)RTC0=0.036, ( S R)R0=0.021

At Tr=1.2 and Pr=0.1

( H R)RTC0=0.073, ( S R)R0=0.042

At Tr=1.3 and Pr=0.05

( H R)RTC0=0.031, ( S R)R0=0.017

At Tr=1.3 and Pr=0.1

( H R)RTC0=0.063, ( S R)R0=0.033

And

At Tr=1.2 and Pr=0.05

( H R)RTC1=0.02, ( S R)R1=0.019

At Tr=1.2 and Pr=0.1

( H R)RTC1=0.04, ( S R)R1=0.037

At Tr=1.3 and Pr=0.05

( H R)RTC1=0.013, ( S R)R1=0.013

At Tr=1.3 and Pr=0.1

( H R)RTC1=0.026, ( S R)R1=0.026

Applying linear interpolation of two independent variables, From linear double interpolation, if M is the function of two independent variable X and Y then the value of quantity M at two independent variables X and Y adjacent to the given values are represented as follows:

  X1XX2Y1M1,1M1,2YM=?Y2M2,1M2,2

  M=[( X2 X X2 X1 )M1,1+( XX1 X2 X1 )M1,2]Y2YY2Y1+[( X2 X X2 X1 )M2,1+( XX1 X2 X1 )M2,2]YY1Y2Y1( HR )RTC0=[( 0.10.0534 0.10.05)×0.036+( 0.05340.05 0.10.05)×0.073]×1.31.2041.31.2+[( 0.10.0534 0.10.05)×0.031+( 0.05340.05 0.10.05)×0.063]×1.2041.21.31.2( HR )RTC0=0.0383

  M=[( X2 X X2 X1 )M1,1+( XX1 X2 X1 )M1,2]Y2YY2Y1+[( X2 X X2 X1 )M2,1+( XX1 X2 X1 )M2,2]YY1Y2Y1( SR )R0=[( 0.10.0534 0.10.05)×0.021+( 0.05340.05 0.10.05)×0.042]×1.31.2041.31.2+[( 0.10.0534 0.10.05)×0.017+( 0.05340.05 0.10.05)×0.033]×1.2041.21.31.2( SR )R0=0.022

And

  M=[( X2 X X2 X1 )M1,1+( XX1 X2 X1 )M1,2]Y2YY2Y1+[( X2 X X2 X1 )M2,1+( XX1 X2 X1 )M2,2]YY1Y2Y1( HR )RTC1=[( 0.10.0534 0.10.05)×0.02+( 0.05340.05 0.10.05)×0.04]×1.31.2041.31.2+[( 0.10.0534 0.10.05)×0.013+( 0.05340.05 0.10.05)×0.026]×1.2041.21.31.2( HR )RTC1=0.02106

  M=[( X2 X X2 X1 )M1,1+( XX1 X2 X1 )M1,2]Y2YY2Y1+[( X2 X X2 X1 )M2,1+( XX1 X2 X1 )M2,2]YY1Y2Y1( SR )R1=[( 0.10.0534 0.10.05)×0.019+( 0.05340.05 0.10.05)×0.037]×1.31.2041.31.2+[( 0.10.0534 0.10.05)×0.013+( 0.05340.05 0.10.05)×0.026]×1.2041.21.31.2( SR )R1=0.02

Now, from equation,

  H2R=(H2R)0+ω(H2R)1

Or

  H2RRTC=( H 2 R)0RTC+ω( H 2 R)1RTCH2RRTC=0.0383+0.1×0.02106H2RRTC=0.0404H2R=0.0404×8.314Jmol K×305.3KH2R=102.561Jmol

And

  S2R=(S2R)0+ω(S2R)1

Or

  S2RR=( S 2 R)0R+ω( S 2 R)1RS2RR=0.022+0.1×0.02S2RR=0.024S2R=0.024×8.314Jmol KS2R=0.1995JmolK

Now,

  T1T2 C P igRdTT=ln P 2 P 1S2RR+S1RRT1T2CPigdTT=ln2.630(0.1995JmolK)8.314Jmol K+(1.048JmolK)8.314Jmol KT1T2CPigdTT=2.5477

Hence,

  T1T2CPigRdTT=[A+{BT0+(CT02+Dτ2T02)(τ+12)}(τ1lnτ)]×lnτ

  τ=TT0

  T1T2 C P igRdTT=[A+{BT0+(CT02+D τ2 T0 2 )( τ+12)}(τ1lnτ)]×lnτT1T2CP igRdTT=[1.131+{19.225×103×493.15+(5.561×106×493.152+0 τ 2× 493.15 2)(τ+12)}(τ1lnτ)]×lnτ2.5477=[1.131+{19.225×103×493.15+(5.561×106×493.152)(τ+12)}(τ1lnτ)]×lnττ=0.7352

  τ=TT00.7352=T493.15KT=362.56K

Now, for work produced

  W=ΔH

And enthalpy change by generalized correlations is given by,

  ΔH=T1T2CPigdT+H2RH1R

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)

Where τ=TT0

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)T0TΔCPRdT=1.131×493.15×(0.7351)+19.225×1032×493.152×(0.73521)+5.561×1063×493.153(0.73531)T0TΔCPRdT=1088.593K

Hence,

  W=ΔH=RT1T2 C P igRdT+H2RH1RW=8.314Jmol K×1088.593K+(102.561Jmol)(669.97Jmol)W=8453.15Jmol

Hence,

  W=ΔH=RT1T2 C P igRdTW=8.314Jmol K×1425.78KW=11853.93Jmol

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Please, provide me the solution with details and plot.
Q2/ An adsorption study is set up in laboratory by adding a known amount of activated carbon to six which contain 200 mL of an industrial waste. An additional flask containing 200 mL of waste but no c is run as a blank. Plot the Langmuir isotherm and determine the values of the constants. Flask No. Mass of C (mg) Volume in Final COD Flask (mL) (mg C/L) 1 804 200 4.7 2 668 200 7.0 3 512 200 9.31 4 393 200 16.6 C 5 313 200 32.5 6 238 200 62.8 7 0 200 250
مشر on ۲/۱ Two rods (fins) having same dimensions, one made of brass(k=85 m K) and the other of copper (k = 375 W/m K), having one of their ends inserted into a furnace. At a section 10.5 cm a way from the furnace, the temperature brass rod 120°C. Find the distance at which the same temperature would be reached in the copper rod ? both ends are exposed to the same environment. 22.05 ofthe

Chapter 6 Solutions

Loose Leaf For Introduction To Chemical Engineering Thermodynamics

Ch. 6 - Prob. 6.11PCh. 6 - Prob. 6.12PCh. 6 - Prob. 6.13PCh. 6 - Prob. 6.14PCh. 6 - Prob. 6.15PCh. 6 - Prob. 6.16PCh. 6 - Prob. 6.17PCh. 6 - Prob. 6.18PCh. 6 - Prob. 6.19PCh. 6 - Prob. 6.20PCh. 6 - Prob. 6.21PCh. 6 - Prob. 6.22PCh. 6 - Prob. 6.23PCh. 6 - Prob. 6.24PCh. 6 - Prob. 6.25PCh. 6 - Prob. 6.26PCh. 6 - Prob. 6.27PCh. 6 - What is the mole fraction of water vapor in air...Ch. 6 - Prob. 6.29PCh. 6 - Prob. 6.30PCh. 6 - Prob. 6.31PCh. 6 - Prob. 6.32PCh. 6 - Prob. 6.33PCh. 6 - Prob. 6.34PCh. 6 - Prob. 6.35PCh. 6 - Prob. 6.36PCh. 6 - Prob. 6.37PCh. 6 - Prob. 6.38PCh. 6 - Prob. 6.39PCh. 6 - Prob. 6.40PCh. 6 - Prob. 6.41PCh. 6 - Prob. 6.42PCh. 6 - Prob. 6.43PCh. 6 - Prob. 6.44PCh. 6 - Prob. 6.45PCh. 6 - Prob. 6.46PCh. 6 - Prob. 6.47PCh. 6 - Prob. 6.48PCh. 6 - Prob. 6.49PCh. 6 - Prob. 6.50PCh. 6 - Prob. 6.51PCh. 6 - Prob. 6.52PCh. 6 - Prob. 6.53PCh. 6 - Prob. 6.54PCh. 6 - Prob. 6.55PCh. 6 - Prob. 6.56PCh. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - Prob. 6.59PCh. 6 - Prob. 6.60PCh. 6 - Prob. 6.61PCh. 6 - Prob. 6.62PCh. 6 - Prob. 6.63PCh. 6 - Prob. 6.64PCh. 6 - Prob. 6.65PCh. 6 - Prob. 6.66PCh. 6 - Prob. 6.67PCh. 6 - Prob. 6.68PCh. 6 - Prob. 6.69PCh. 6 - Prob. 6.71PCh. 6 - Prob. 6.72PCh. 6 - Prob. 6.73PCh. 6 - Prob. 6.74PCh. 6 - Prob. 6.75PCh. 6 - Prob. 6.76PCh. 6 - Prob. 6.77PCh. 6 - Prob. 6.78PCh. 6 - Prob. 6.79PCh. 6 - Prob. 6.80PCh. 6 - Prob. 6.81PCh. 6 - The temperature dependence of the second virial...Ch. 6 - Prob. 6.83PCh. 6 - Prob. 6.84PCh. 6 - Prob. 6.85PCh. 6 - Prob. 6.86PCh. 6 - Prob. 6.87PCh. 6 - Prob. 6.88PCh. 6 - Prob. 6.89PCh. 6 - Prob. 6.90PCh. 6 - Prob. 6.91PCh. 6 - Prob. 6.92PCh. 6 - Prob. 6.93PCh. 6 - Prob. 6.94PCh. 6 - Prob. 6.95PCh. 6 - Prob. 6.96PCh. 6 - Prob. 6.97PCh. 6 - Prob. 6.98PCh. 6 - Prob. 6.99PCh. 6 - Prob. 6.100P
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The