Loose Leaf For Introduction To Chemical Engineering Thermodynamics
Loose Leaf For Introduction To Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259878084
Author: Smith Termodinamica En Ingenieria Quimica, J.m.; Van Ness, Hendrick C; Abbott, Michael; Swihart, Mark
Publisher: McGraw-Hill Education
Question
Book Icon
Chapter 6, Problem 6.59P

(a)

Interpretation Introduction

Interpretation:

Determine the temperature of the expanded ethane gas, expands isentropically in a turbine and work produced if properties of ethane are calculated by equations for an ideal gas.

Concept Introduction:

The entropy change for an ideal gas is calculated by,

  ΔS=T1T2CPigdTTRlnP2P1.     ...(1)

(a)

Expert Solution
Check Mark

Answer to Problem 6.59P

Temperature is

  T=367.4K

Work done is

  W=8746.9Jmol

Explanation of Solution

Given information:

It is given that ethane expands isentropically from 30bar and 493.15Kto 2.6bar .

Process is isentropically, so ΔS=0

From equation (1)

  ΔS=T1T2CPigdTTRln P 2 P 10=RT1T2CP igRdTTRlnP2P1T1T2CPigRdTT=lnP2P1

wherE

  T1T2CPigRdTT=[A+{BT0+(CT02+Dτ2T02)(τ+12)}(τ1lnτ)]×lnτ

  τ=TT0

Values of constants for ethane in above equation are given in appendix C table C.1 and noted down below:

  iA103B106C105DEthane1.13119.2255.5610

  T1T2 C P igRdTT=[A+{BT0+(CT02+D τ2 T0 2 )( τ+12)}(τ1lnτ)]×lnτT1T2CP igRdTT=[1.131+{19.225×103×493.15+(5.561×106×493.152+0 τ 2× 493.15 2)(τ+12)}(τ1lnτ)]×lnτlnP2P1=[1.131+{19.225×103×493.15+(5.561×106×493.152+0 τ 2× 493.15 2)(τ+12)}(τ1lnτ)]×lnτln2.630=[1.131+{19.225×103×493.15+(5.561×106×493.152)(τ+12)}(τ1lnτ)]×lnττ=0.745

  τ=TT00.745=T493.15KT=367.4K

For work produced

  W=ΔH for ideal gas

And for ideal gas

  ΔH=T1T2CPigdTΔH=RT1T2CP igRdT

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)

Where τ=TT0

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)T0TΔCPRdT=1.131×493.15×(0.7451)+19.225×1032×493.152×(0.74521)+5.561×1063×493.153(0.74531)T0TΔCPRdT=1052.07K

Hence,

  W=ΔH=RT1T2 C P igRdTW=8.314Jmol K×1052.07KW=8746.9Jmol

(b)

Interpretation Introduction

Interpretation:

Determine the temperature of the expanded ethane gas, expands isentropically in a turbine and work produced if properties of ethylene are calculated by appropriate generalized correlations.

Concept Introduction:

The entropy change by appropriate generalized correlations is

  ΔS=T1T2CPigdTTRlnP2P1+S2RS1R.     ...(2)

(b)

Expert Solution
Check Mark

Answer to Problem 6.59P

Temperature is

  T=362.56K

Work done is

  W=8453.15Jmol

Explanation of Solution

Given information:

It is given that ethane expands isentropically from 30bar and 493.15Kto 2.6bar .

Process is isentropically, so ΔS=0

From equation (2),

  ΔS=T1T2CPigdTTRln P 2 P 1+S2RS1RRT1T2CP igRdTTRlnP2P1+S2RS1R=0RT1T2CPigRdTT=RlnP2P1S2R+S1R

Initial statE

For pure species ethane, the properties can be written down using Appendix B, Table B.1

ω=0.1, Tc=305.3K, Pc=48.72bar, ZC=0.279

  Tr=T1TcTr=493.15K305.3K=1.615

  Pr=P1PcPr=30bar48.72bar=0.61576

So, at above values of Tr and Pr, The values of ( H R)RTC0 and ( H R)RTC1 can be written from Appendix D

Tr=1.615 lies between reduced temperatures Tr=1.6and Tr=1.7 and Pr=0.61576 lies in between reduced pressures Pr=0.6 and Pr=0.8 .

At Tr=1.6 and Pr=0.6

( H R)RTC0=0.261, ( S R)R0=0.12

At Tr=1.6 and Pr=0.8

( H R)RTC0=0.35, ( S R)R0=0.162

At Tr=1.7 and Pr=0.6

( H R)RTC0=0.231, ( S R)R0=0.102

At Tr=1.7 and Pr=0.8

( H R)RTC0=0.309, ( S R)R0=0.137

And

At Tr=1.6 and Pr=0.6

( H R)RTC1=0.013, ( S R)R1=0.057

At Tr=1.6 and Pr=0.8

( H R)RTC1=0.011, ( S R)R1=0.073

At Tr=1.7 and Pr=0.6

( H R)RTC1=0.009, ( S R)R1=0.044

At Tr=1.7 and Pr=0.8

( H R)RTC1=0.017, ( S R)R1=0.056

Applying linear interpolation of two independent variables, From linear double interpolation, if M is the function of two independent variable X and Y then the value of quantity M at two independent variables X and Y adjacent to the given values are represented as follows:

  X1XX2Y1M1,1M1,2YM=?Y2M2,1M2,2

  M=[( X2 X X2 X1 )M1,1+( XX1 X2 X1 )M1,2]Y2YY2Y1+[( X2 X X2 X1 )M2,1+( XX1 X2 X1 )M2,2]YY1Y2Y1( HR )RTC0=[( 0.80.61576 0.80.6)×0.261+( 0.615760.6 0.80.6)×0.35]×1.71.6151.71.6+[( 0.80.61576 0.80.6)×0.231+( 0.615760.6 0.80.6)×0.309]×1.6151.61.71.6( HR )RTC0=0.263

  M=[( X2 X X2 X1 )M1,1+( XX1 X2 X1 )M1,2]Y2YY2Y1+[( X2 X X2 X1 )M2,1+( XX1 X2 X1 )M2,2]YY1Y2Y1( SR )R0=[( 0.80.61576 0.80.6)×0.12+( 0.615760.6 0.80.6)×0.162]×1.71.6151.71.6+[( 0.80.61576 0.80.6)×0.102+( 0.615760.6 0.80.6)×0.137]×1.6151.61.71.6( SR )R0=0.1205

And

  M=[( X2 X X2 X1 )M1,1+( XX1 X2 X1 )M1,2]Y2YY2Y1+[( X2 X X2 X1 )M2,1+( XX1 X2 X1 )M2,2]YY1Y2Y1( HR )RTC1=[( 0.80.61576 0.80.6)×0.013+( 0.615760.6 0.80.6)×0.011]×1.71.6151.71.6+[( 0.80.61576 0.80.6)×0.009+( 0.615760.6 0.80.6)×0.017]×1.6151.61.71.6( HR )RTC1=0.0095

  M=[( X2 X X2 X1 )M1,1+( XX1 X2 X1 )M1,2]Y2YY2Y1+[( X2 X X2 X1 )M2,1+( XX1 X2 X1 )M2,2]YY1Y2Y1( SR )R1=[( 0.80.61576 0.80.6)×0.057+( 0.615760.6 0.80.6)×0.073]×1.71.6151.71.6+[( 0.80.61576 0.80.6)×0.044+( 0.615760.6 0.80.6)×0.056]×1.6151.61.71.6( SR )R1=0.056

Now, from equation,

  H1R=(H1R)0+ω(H1R)1

Or

  H1RRTC=( H 1 R)0RTC+ω( H 1 R)1RTCH1RRTC=0.263+0.1×0.0095H1RRTC=0.26395H1R=0.26395×8.314Jmol K×305.3KH1R=669.97Jmol

And

  S1R=(S1R)0+ω(S1R)1

Or

  S1RR=( S 1 R)0R+ω( S 1 R)1RS1RR=0.1205+0.1×0.056S1RR=0.1261S1R=0.1261×8.314Jmol KS1R=1.048JmolK

Final state

Final state temperature is calculated in part (a), T=367.4K

  iA103B106C105DEthane1.13119.2255.5610

  Tr=T2TcTr=367.4K305.3K=1.204

  Pr=P2PcPr=2.6bar48.72bar=0.0534

So, at above values of Tr and Pr, The values of ( H R)RTC0 and ( H R)RTC1 can be written from Appendix D

Tr=1.204 lies between reduced temperatures Tr=1.2and Tr=1.3 and Pr=0.0534 lies in between reduced pressures Pr=0.05 and Pr=0.1 .

At Tr=1.2 and Pr=0.05

( H R)RTC0=0.036, ( S R)R0=0.021

At Tr=1.2 and Pr=0.1

( H R)RTC0=0.073, ( S R)R0=0.042

At Tr=1.3 and Pr=0.05

( H R)RTC0=0.031, ( S R)R0=0.017

At Tr=1.3 and Pr=0.1

( H R)RTC0=0.063, ( S R)R0=0.033

And

At Tr=1.2 and Pr=0.05

( H R)RTC1=0.02, ( S R)R1=0.019

At Tr=1.2 and Pr=0.1

( H R)RTC1=0.04, ( S R)R1=0.037

At Tr=1.3 and Pr=0.05

( H R)RTC1=0.013, ( S R)R1=0.013

At Tr=1.3 and Pr=0.1

( H R)RTC1=0.026, ( S R)R1=0.026

Applying linear interpolation of two independent variables, From linear double interpolation, if M is the function of two independent variable X and Y then the value of quantity M at two independent variables X and Y adjacent to the given values are represented as follows:

  X1XX2Y1M1,1M1,2YM=?Y2M2,1M2,2

  M=[( X2 X X2 X1 )M1,1+( XX1 X2 X1 )M1,2]Y2YY2Y1+[( X2 X X2 X1 )M2,1+( XX1 X2 X1 )M2,2]YY1Y2Y1( HR )RTC0=[( 0.10.0534 0.10.05)×0.036+( 0.05340.05 0.10.05)×0.073]×1.31.2041.31.2+[( 0.10.0534 0.10.05)×0.031+( 0.05340.05 0.10.05)×0.063]×1.2041.21.31.2( HR )RTC0=0.0383

  M=[( X2 X X2 X1 )M1,1+( XX1 X2 X1 )M1,2]Y2YY2Y1+[( X2 X X2 X1 )M2,1+( XX1 X2 X1 )M2,2]YY1Y2Y1( SR )R0=[( 0.10.0534 0.10.05)×0.021+( 0.05340.05 0.10.05)×0.042]×1.31.2041.31.2+[( 0.10.0534 0.10.05)×0.017+( 0.05340.05 0.10.05)×0.033]×1.2041.21.31.2( SR )R0=0.022

And

  M=[( X2 X X2 X1 )M1,1+( XX1 X2 X1 )M1,2]Y2YY2Y1+[( X2 X X2 X1 )M2,1+( XX1 X2 X1 )M2,2]YY1Y2Y1( HR )RTC1=[( 0.10.0534 0.10.05)×0.02+( 0.05340.05 0.10.05)×0.04]×1.31.2041.31.2+[( 0.10.0534 0.10.05)×0.013+( 0.05340.05 0.10.05)×0.026]×1.2041.21.31.2( HR )RTC1=0.02106

  M=[( X2 X X2 X1 )M1,1+( XX1 X2 X1 )M1,2]Y2YY2Y1+[( X2 X X2 X1 )M2,1+( XX1 X2 X1 )M2,2]YY1Y2Y1( SR )R1=[( 0.10.0534 0.10.05)×0.019+( 0.05340.05 0.10.05)×0.037]×1.31.2041.31.2+[( 0.10.0534 0.10.05)×0.013+( 0.05340.05 0.10.05)×0.026]×1.2041.21.31.2( SR )R1=0.02

Now, from equation,

  H2R=(H2R)0+ω(H2R)1

Or

  H2RRTC=( H 2 R)0RTC+ω( H 2 R)1RTCH2RRTC=0.0383+0.1×0.02106H2RRTC=0.0404H2R=0.0404×8.314Jmol K×305.3KH2R=102.561Jmol

And

  S2R=(S2R)0+ω(S2R)1

Or

  S2RR=( S 2 R)0R+ω( S 2 R)1RS2RR=0.022+0.1×0.02S2RR=0.024S2R=0.024×8.314Jmol KS2R=0.1995JmolK

Now,

  T1T2 C P igRdTT=ln P 2 P 1S2RR+S1RRT1T2CPigdTT=ln2.630(0.1995JmolK)8.314Jmol K+(1.048JmolK)8.314Jmol KT1T2CPigdTT=2.5477

Hence,

  T1T2CPigRdTT=[A+{BT0+(CT02+Dτ2T02)(τ+12)}(τ1lnτ)]×lnτ

  τ=TT0

  T1T2 C P igRdTT=[A+{BT0+(CT02+D τ2 T0 2 )( τ+12)}(τ1lnτ)]×lnτT1T2CP igRdTT=[1.131+{19.225×103×493.15+(5.561×106×493.152+0 τ 2× 493.15 2)(τ+12)}(τ1lnτ)]×lnτ2.5477=[1.131+{19.225×103×493.15+(5.561×106×493.152)(τ+12)}(τ1lnτ)]×lnττ=0.7352

  τ=TT00.7352=T493.15KT=362.56K

Now, for work produced

  W=ΔH

And enthalpy change by generalized correlations is given by,

  ΔH=T1T2CPigdT+H2RH1R

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)

Where τ=TT0

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)T0TΔCPRdT=1.131×493.15×(0.7351)+19.225×1032×493.152×(0.73521)+5.561×1063×493.153(0.73531)T0TΔCPRdT=1088.593K

Hence,

  W=ΔH=RT1T2 C P igRdT+H2RH1RW=8.314Jmol K×1088.593K+(102.561Jmol)(669.97Jmol)W=8453.15Jmol

Hence,

  W=ΔH=RT1T2 C P igRdTW=8.314Jmol K×1425.78KW=11853.93Jmol

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Water is pumped from a large reservoir to a point 75 feet higher than the reservoir. How many feet of head must be added by the pump if 7600 lbm/hr flows through a 6-inch pipe and the frictional head loss is 3 feet? The density of the fluid is 60 lbm/ft³ and the pump efficiency is 70%. Assume the kinetic energy correction factor equals 1.
A firefighter is using a large water tank to supply water for extinguishing a fire. The tank has a small hole at the bottom, and water is leaking out due to gravity. The hole is located 2.5 meters below the water surface inside the tank. a. Determine the speed at which the water exits the hole. Assume there is no air resistance and that the water flow is ideal (neglect viscosity and turbulence). b. If the hole has a diameter of 2 cm, calculate the flow rate (discharge rate) in liters per second.
What kind of boundary must a system have to undergo the stated Interaction with its surroundings if possible ( mention the 3 qualities of the boundary in each case A. WORK INTERACTIONS ONLY B. MASS AND HEAT INTERACTIONS ONLY  C. HEAT INTERACTIONS ONLY  IS THIS POSSIBLE,  EXPLAIN.  D. WORK AND MASS INTERACTIONS ONLY. E. WORK AND HEAT INTERACTIONS ONLY F. MASS INTERACTIONS ONLY. IS THIS POSSIBLE OR NOT. EXPLAIN

Chapter 6 Solutions

Loose Leaf For Introduction To Chemical Engineering Thermodynamics

Ch. 6 - Prob. 6.11PCh. 6 - Prob. 6.12PCh. 6 - Prob. 6.13PCh. 6 - Prob. 6.14PCh. 6 - Prob. 6.15PCh. 6 - Prob. 6.16PCh. 6 - Prob. 6.17PCh. 6 - Prob. 6.18PCh. 6 - Prob. 6.19PCh. 6 - Prob. 6.20PCh. 6 - Prob. 6.21PCh. 6 - Prob. 6.22PCh. 6 - Prob. 6.23PCh. 6 - Prob. 6.24PCh. 6 - Prob. 6.25PCh. 6 - Prob. 6.26PCh. 6 - Prob. 6.27PCh. 6 - What is the mole fraction of water vapor in air...Ch. 6 - Prob. 6.29PCh. 6 - Prob. 6.30PCh. 6 - Prob. 6.31PCh. 6 - Prob. 6.32PCh. 6 - Prob. 6.33PCh. 6 - Prob. 6.34PCh. 6 - Prob. 6.35PCh. 6 - Prob. 6.36PCh. 6 - Prob. 6.37PCh. 6 - Prob. 6.38PCh. 6 - Prob. 6.39PCh. 6 - Prob. 6.40PCh. 6 - Prob. 6.41PCh. 6 - Prob. 6.42PCh. 6 - Prob. 6.43PCh. 6 - Prob. 6.44PCh. 6 - Prob. 6.45PCh. 6 - Prob. 6.46PCh. 6 - Prob. 6.47PCh. 6 - Prob. 6.48PCh. 6 - Prob. 6.49PCh. 6 - Prob. 6.50PCh. 6 - Prob. 6.51PCh. 6 - Prob. 6.52PCh. 6 - Prob. 6.53PCh. 6 - Prob. 6.54PCh. 6 - Prob. 6.55PCh. 6 - Prob. 6.56PCh. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - Prob. 6.59PCh. 6 - Prob. 6.60PCh. 6 - Prob. 6.61PCh. 6 - Prob. 6.62PCh. 6 - Prob. 6.63PCh. 6 - Prob. 6.64PCh. 6 - Prob. 6.65PCh. 6 - Prob. 6.66PCh. 6 - Prob. 6.67PCh. 6 - Prob. 6.68PCh. 6 - Prob. 6.69PCh. 6 - Prob. 6.71PCh. 6 - Prob. 6.72PCh. 6 - Prob. 6.73PCh. 6 - Prob. 6.74PCh. 6 - Prob. 6.75PCh. 6 - Prob. 6.76PCh. 6 - Prob. 6.77PCh. 6 - Prob. 6.78PCh. 6 - Prob. 6.79PCh. 6 - Prob. 6.80PCh. 6 - Prob. 6.81PCh. 6 - The temperature dependence of the second virial...Ch. 6 - Prob. 6.83PCh. 6 - Prob. 6.84PCh. 6 - Prob. 6.85PCh. 6 - Prob. 6.86PCh. 6 - Prob. 6.87PCh. 6 - Prob. 6.88PCh. 6 - Prob. 6.89PCh. 6 - Prob. 6.90PCh. 6 - Prob. 6.91PCh. 6 - Prob. 6.92PCh. 6 - Prob. 6.93PCh. 6 - Prob. 6.94PCh. 6 - Prob. 6.95PCh. 6 - Prob. 6.96PCh. 6 - Prob. 6.97PCh. 6 - Prob. 6.98PCh. 6 - Prob. 6.99PCh. 6 - Prob. 6.100P
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The