Loose Leaf For Introduction To Chemical Engineering Thermodynamics
Loose Leaf For Introduction To Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259878084
Author: Smith Termodinamica En Ingenieria Quimica, J.m.; Van Ness, Hendrick C; Abbott, Michael; Swihart, Mark
Publisher: McGraw-Hill Education
Question
Book Icon
Chapter 6, Problem 6.50P
Interpretation Introduction

Interpretation:

Determine the molar volume, enthalpy and entropyfor1,3-butadiene as a saturated vapor and as a saturated liquid at 380K .

Concept Introduction:

From Lee and Kesler generalized correlations, the molar volume of the propane in the final state, enthalpy and entropy changes are calculated as:

  V=ZRTP

Where, Z=Z0+ωZ1....(1)

And enthalpy and entropy changes are calculated as:

  H=ΔH=T1T2CPigdT+H2RH1R

Where, HR=(HR)0+ω(HR)1....(2)

And

  S=ΔS=T1T2CPigdTTRlnP2P1+S2RS1R

Where, SR=(SR)0+ω(SR)1....(3)

Expert Solution & Answer
Check Mark

Answer to Problem 6.50P

The molar volume is

Vvap=872.38cm3mol, Vliq=109.95cm3mol

And

Hvap=1680.026Jmol

, Hliq=12308.09Jmol

Svap=14.056Jmol K, Sliq=50.87Jmol K

Explanation of Solution

Given information:

It is given that enthalpy and entropy are set equal to zero for the ideal gas state at 101.33kPa and 273.15K .

The vapor pressure of 1,3-butadiene at 380K is 1919.4kPa

For pure species 1,3-butadiene, the properties can be written down using Appendix B, Table B.1

ω=0.19, Tc=425.2K, Pc=42.77bar, ZC=0.267, Tn=268.7K, VC=220.4cm3mol

The molar volume for1,3-butadiene saturated vapor is calculated directly from equation,

  V=ZRTP

For Z=Z0+ωZ1

  Tr=T2TcTr=380K425.2K=0.894

Since vapor pressure is given as 1919.4kPa and is final state pressure.

So,

  Pr=PPcPr=1919.4kPa×1bar100kPa42.77bar=0.449

So, at above values of Tr and Pr, The values of Z0 and Z1 can be written from Appendix D

Tr=0.894 lies between reduced temperatures Tr=0.85 and Tr=0.90 and Pr=0.449 lies in between reduced pressures Pr=0.4 and Pr=0.6 .

At Tr=0.85 and Pr=0.4

Z0=0.0661, ( H R)RTC0=4.309, ( S R)R0=4.785

At Tr=0.85 and Pr=0.6

Z0=0.0983, ( H R)RTC0=4.313, ( S R)R0=4.418

At Tr=0.90 and Pr=0.4

Z0=0.78, ( H R)RTC0=0.596, ( S R)R0=0.463

At Tr=0.90 and Pr=0.6

Z0=0.1006, ( H R)RTC0=4.074, ( S R)R0=4.145

And

At Tr=0.85 and Pr=0.4

Z1=0.0268, ( H R)RTC1=4.753, ( S R)R1=4.853

At Tr=0.85 and Pr=0.6

Z1=0.0391, ( H R)RTC1=4.754, ( S R)R1=4.841

At Tr=0.90 and Pr=0.4

Z1=0.1118, ( H R)RTC1=0.751, ( S R)R1=0.744

At Tr=0.90 and Pr=0.6

Z1=0.0396, ( H R)RTC1=4.254, ( S R)R1=4.269

Applying linear interpolation of two independent variables, From linear double interpolation, if M is the function of two independent variable X and Y then the value of quantity M at two independent variables X and Y adjacent to the given values are represented as follows:

  X1XX2Y1M1,1M1,2YM=?Y2M2,1M2,2

So,

  M=[( X 2 X X 2 X 1 )M1,1+( X X 1 X 2 X 1 )M1,2]Y2YY2Y1+[( X 2 X X 2 X 1 )M2,1+( X X 1 X 2 X 1 )M2,2]YY1Y2Y1Z0=[( 0.60.449 0.60.4)×0.0661+( 0.4490.4 0.60.4)×0.0983]×0.90.8940.90.85+[( 0.60.449 0.60.4)×0.78+( 0.4490.4 0.60.4)×0.1006]×0.894-0.850.90.85Z0=0.549

  M=[( X 2 X X 2 X 1 )M1,1+( X X 1 X 2 X 1 )M1,2]Y2YY2Y1+[( X 2 X X 2 X 1 )M2,1+( X X 1 X 2 X 1 )M2,2]YY1Y2Y1( H R )RTC0=[( 0.60.449 0.60.4)×4.309+( 0.4490.4 0.60.4)×4.313]×0.90.8940.90.85+[( 0.60.449 0.60.4)×0.596+( 0.4490.4 0.60.4)×4.074]×0.894-0.850.90.85( H R )RTC0=1.791

  M=[( X 2 X X 2 X 1 )M1,1+( X X 1 X 2 X 1 )M1,2]Y2YY2Y1+[( X 2 X X 2 X 1 )M2,1+( X X 1 X 2 X 1 )M2,2]YY1Y2Y1( S R )R0=[( 0.60.449 0.60.4)×4.785+( 0.4490.4 0.60.4)×4.418]×0.90.8940.90.85+[( 0.60.449 0.60.4)×0.463+( 0.4490.4 0.60.4)×4.145]×0.894-0.850.90.85( S R )R0=1.823

And

  M=[( X 2 X X 2 X 1 )M1,1+( X X 1 X 2 X 1 )M1,2]Y2YY2Y1+[( X 2 X X 2 X 1 )M2,1+( X X 1 X 2 X 1 )M2,2]YY1Y2Y1Z1=[( 0.60.449 0.60.4)×0.0268+( 0.4490.4 0.60.4)×0.0391]×0.90.8940.90.85+[( 0.60.449 0.60.4)×0.1118+( 0.4490.4 0.60.4)×0.0396]×0.894-0.850.90.85Z1=0.086

  M=[( X 2 X X 2 X 1 )M1,1+( X X 1 X 2 X 1 )M1,2]Y2YY2Y1+[( X 2 X X 2 X 1 )M2,1+( X X 1 X 2 X 1 )M2,2]YY1Y2Y1( H R )RTC1=[( 0.60.449 0.60.4)×4.753+( 0.4490.4 0.60.4)×4.754]×0.90.8940.90.85+[( 0.60.449 0.60.4)×0.751+( 0.4490.4 0.60.4)×4.254]×0.894-0.850.90.85( H R )RTC1=1.987

  M=[( X 2 X X 2 X 1 )M1,1+( X X 1 X 2 X 1 )M1,2]Y2YY2Y1+[( X 2 X X 2 X 1 )M2,1+( X X 1 X 2 X 1 )M2,2]YY1Y2Y1( S R )R1=[( 0.60.449 0.60.4)×4.853+( 0.4490.4 0.60.4)×4.841]×0.90.8940.90.85+[( 0.60.449 0.60.4)×0.744+( 0.4490.4 0.60.4)×4.269]×0.894-0.850.90.85( S R )R1=1.997

Now from equation (1) at final state

  Z=Z0+ωZ1Z=0.549+0.19×0.086Z=0.53

And

  V=ZRTPV=0.53×8.314l kPamol K×1000 cm 31l×380K1919.4kPaVvap=872.38cm3mol

From equation (2) at final state,

  HR=(HR)0+ω(HR)1

  ( H R )RTC0=1.791(HR)0=1.791×8.314Jmol K×425.2K(HR)0=6331.39Jmol

And

  ( H R )RTC1=1.987(HR)1=1.987×8.314Jmol K×425.2K(HR)1=7024.27Jmol

So,

  HR=(HR)0+ω(HR)1HR=6331.39Jmol+0.19×7024.27JmolHR=7666.0013Jmol

  ΔH=T1T2CPigdT+H2RH1R

At final state H1R=0

  ΔH=T1T2CPigdT+H2R

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)

Where τ=TT0

  τ=TT0=380273.15=1.391

Values of above constants for 1,3-Butadiene in above equation are given in appendix C table C.1 and noted down below:

  iA103B106C105D1,3butadiene2.73426.7868.8820

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)T0TΔCPRdT=2.734×273.15×(1.3911)+26.786×1032273.152(1.39121)+8.882×1063×273.153(1.39131)+0×105273.15(1.39111.391)T0TΔCPRdT=1124.13K

  ΔH=RT1T2 C P igRdT+H2RΔH=8.314JKmol×1124.13K7666.0013JmolΔH=1680.026Jmol=Hvap

  ( S R )R0=1.823(SR)0=1.823×8.314Jmol K(SR)0=15.16Jmol K

And

  ( S R )R1=1.997(SR)1=8.314Jmol K×1.997(SR)1=16.6Jmol K

So,

  SR=(SR)0+ω(SR)1SR=15.16Jmol K+0.19×16.6Jmol KSR=18.31Jmol K

  ΔS=T1T2CPigdTTRlnP2P1+S2RS1R

At final state S1R=0

  ΔS=RT1T2CPigRdTTRlnP2P1+S2R

  T1T2CPigRdTT=[A+{BT0+(CT02+Dτ2T02)(τ+12)}(τ1lnτ)]×lnτ

  τ=TT0=380273.15=1.391

Values of above constants for 1,3-Butadiene in above equation are given in appendix C table C.1 and noted down below:

  iA103B106C105D1,3butadiene2.73426.7868.8820

  T1T2 C P igRdTT=[A+{BT0+(CT02+D τ 2 T 0 2 )( τ+12)}(τ1lnτ)]×lnτT1T2CP igRdTT=[2.734+{26.786×103×273.15+(8.882×106×273.152+0× 10 5 1.391 2× 273.15 2)(1.391+12)}(1.3911ln1.391)]×ln1.391T1T2CPigRdTT=3.453

Hence,

  ΔS=RT1T2 C P igRdTTRln P 2 P 1+S2RΔS=8.314Jmol K×3.4538.314Jmol K×ln1919.4kPa101.33kPa+(18.31Jmol K)ΔS=Svap=14.056Jmol K

Now, for saturated liquid

Molar volume of saturated liquid can be found out using following correlation proposed by Rackett

  Vsat=VCZC(1 T r)0.2857Vsat=220.4cm3mol×0.267(10.894)0.2857Vliq=109.95cm3mol

Now, for enthalpy and entropy of saturated liquid

  ΔHnRTn=1.092(ln P C1.013)0.93 T n T cΔHnRTn=1.092(ln42.771.013)0.93268.7K425.2KΔHnRTn=10.05ΔHn=10.05×8.314Jmol K×268.7KΔHn=22448.8Jmol

  ΔH2ΔH1=( 1 T r2 1 T r1 )0.38ΔH222448.8Jmol=( 10.894 1 268.7K 425.2K )0.38ΔH2=13988.12Jmol

  ΔH2=HvapHliqHliq=HvapΔH2Hliq=1680.026Jmol13988.12JmolHliq=12308.09Jmol

  ΔH2T=SvapSliqSliq=SvapΔH2TSliq=14.056Jmol K13988.12Jmol380KSliq=50.87Jmol K

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
مشر on ۲/۱ Two rods (fins) having same dimensions, one made of brass(k=85 m K) and the other of copper (k = 375 W/m K), having one of their ends inserted into a furnace. At a section 10.5 cm a way from the furnace, the temperature brass rod 120°C. Find the distance at which the same temperature would be reached in the copper rod ? both ends are exposed to the same environment. 22.05 ofthe
4.59 Using the unilateral z-transform, solve the following difference equations with the given initial conditions. (a) y[n]-3y[n-1] = x[n], with x[n] = 4u[n], y[− 1] = 1 (b) y[n]-5y[n-1]+6y[n-2]= x[n], with x[n] = u[n], y[-1] = 3, y[-2]= 2 Ans. (a) y[n] = -2+9(3)", n ≥ -1 (b) y[n]=+8(2)" - (3)", n ≥ -2
(30) 6. In a process design, the following process streams must be cooled or heated: Stream No mCp Temperature In Temperature Out °C °C kW/°C 1 5 350 270 2 9 270 120 3 3 100 320 4 5 120 288 Use the MUMNE algorithm for heat exchanger networks with a minimum approach temperature of 20°C. (5) a. Determine the temperature interval diagram. (3) (2) (10) (10) b. Determine the cascade diagram, the pinch temperatures, and the minimum hot and cold utilities. c. Determine the minimum number of heat exchangers above and below the pinch. d. Determine a valid heat exchange network above the pinch. e. Determine a valid heat exchange network below the pinch.

Chapter 6 Solutions

Loose Leaf For Introduction To Chemical Engineering Thermodynamics

Ch. 6 - Prob. 6.11PCh. 6 - Prob. 6.12PCh. 6 - Prob. 6.13PCh. 6 - Prob. 6.14PCh. 6 - Prob. 6.15PCh. 6 - Prob. 6.16PCh. 6 - Prob. 6.17PCh. 6 - Prob. 6.18PCh. 6 - Prob. 6.19PCh. 6 - Prob. 6.20PCh. 6 - Prob. 6.21PCh. 6 - Prob. 6.22PCh. 6 - Prob. 6.23PCh. 6 - Prob. 6.24PCh. 6 - Prob. 6.25PCh. 6 - Prob. 6.26PCh. 6 - Prob. 6.27PCh. 6 - What is the mole fraction of water vapor in air...Ch. 6 - Prob. 6.29PCh. 6 - Prob. 6.30PCh. 6 - Prob. 6.31PCh. 6 - Prob. 6.32PCh. 6 - Prob. 6.33PCh. 6 - Prob. 6.34PCh. 6 - Prob. 6.35PCh. 6 - Prob. 6.36PCh. 6 - Prob. 6.37PCh. 6 - Prob. 6.38PCh. 6 - Prob. 6.39PCh. 6 - Prob. 6.40PCh. 6 - Prob. 6.41PCh. 6 - Prob. 6.42PCh. 6 - Prob. 6.43PCh. 6 - Prob. 6.44PCh. 6 - Prob. 6.45PCh. 6 - Prob. 6.46PCh. 6 - Prob. 6.47PCh. 6 - Prob. 6.48PCh. 6 - Prob. 6.49PCh. 6 - Prob. 6.50PCh. 6 - Prob. 6.51PCh. 6 - Prob. 6.52PCh. 6 - Prob. 6.53PCh. 6 - Prob. 6.54PCh. 6 - Prob. 6.55PCh. 6 - Prob. 6.56PCh. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - Prob. 6.59PCh. 6 - Prob. 6.60PCh. 6 - Prob. 6.61PCh. 6 - Prob. 6.62PCh. 6 - Prob. 6.63PCh. 6 - Prob. 6.64PCh. 6 - Prob. 6.65PCh. 6 - Prob. 6.66PCh. 6 - Prob. 6.67PCh. 6 - Prob. 6.68PCh. 6 - Prob. 6.69PCh. 6 - Prob. 6.71PCh. 6 - Prob. 6.72PCh. 6 - Prob. 6.73PCh. 6 - Prob. 6.74PCh. 6 - Prob. 6.75PCh. 6 - Prob. 6.76PCh. 6 - Prob. 6.77PCh. 6 - Prob. 6.78PCh. 6 - Prob. 6.79PCh. 6 - Prob. 6.80PCh. 6 - Prob. 6.81PCh. 6 - The temperature dependence of the second virial...Ch. 6 - Prob. 6.83PCh. 6 - Prob. 6.84PCh. 6 - Prob. 6.85PCh. 6 - Prob. 6.86PCh. 6 - Prob. 6.87PCh. 6 - Prob. 6.88PCh. 6 - Prob. 6.89PCh. 6 - Prob. 6.90PCh. 6 - Prob. 6.91PCh. 6 - Prob. 6.92PCh. 6 - Prob. 6.93PCh. 6 - Prob. 6.94PCh. 6 - Prob. 6.95PCh. 6 - Prob. 6.96PCh. 6 - Prob. 6.97PCh. 6 - Prob. 6.98PCh. 6 - Prob. 6.99PCh. 6 - Prob. 6.100P
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The