a)
Interpretation:Whether in below reaction mole fraction of reactants or products increases or remains same as volume is increased is to be determined.
Concept introduction: In accordance to Le Chatelier’s principle change in reaction condition brings changes in position of equilibrium and shifts equilibrium in that direction that tends to decrease the change. It states that with increase in pressure of container its volume decreases. Increase in volume shifts equilibrium in that direction that increases the overall volume. Decrease in volumes shifts equilibrium in that direction that has les number of moles.
Mole fraction is the ratio of number of moles of component in mixture to total number of moles in a solution. Hence mole fraction is directly related to number of moles.
b)
Interpretation: Whether in below reaction mole fraction of reactants or products increases or remains same as volume is increased is to be determined.
Concept introduction: In accordance to Le Chatelier’s principle change in reaction condition brings changes in position of equilibrium and shifts equilibrium in that direction that tends to decrease the change. It states that with increase in pressure of container its volume decreases. Increase in volume shifts equilibrium in that direction that increases the overall volume. Decrease in volumes shifts equilibrium in that direction that has les number of moles.
Mole fraction is the ratio of number of moles of component in mixture to total number of moles in a solution. Hence mole fraction is directly related to number of moles.
c)
Interpretation: Whether in below reaction mole fraction of reactants or products increases or remains same as volume is increased is to be determined.
Concept introduction: In accordance to Le Chatelier’s principle change in reaction condition brings changes in position of equilibrium and shifts equilibrium in that direction that tends to decrease the change. It states that with increase in pressure of container its volume decreases. Increase in volume shifts equilibrium in that direction that increases the overall volume. Decrease in volumes shifts equilibrium in that direction that has les number of moles.
Mole fraction is the ratio of number of moles of component in mixture to total number of moles in a solution. Hence mole fraction is directly related to number of moles.

Want to see the full answer?
Check out a sample textbook solution
Chapter 6 Solutions
Chemical Principles
- H3C. H3C CH 3 CH 3 CH3 1. LDA 2. PhSeCl 3. H2O2arrow_forwardPlease predict the products for each of the following reactions: 1.03 2. H₂O NaNH, 1. n-BuLi 2. Mel A H₂ 10 9 0 H2SO4, H₂O HgSO4 Pd or Pt (catalyst) B 9 2 n-BuLi ♡ D2 (deuterium) Lindlar's Catalyst 1. NaNH2 2. EtBr Na, ND3 (deuterium) 2. H₂O2, NaOH 1. (Sia)2BH с Darrow_forwardin the scope of ontario SCH4U grade 12 course, please show ALL workarrow_forward
- Is the chemical reaction CuCl42-(green) + 4H2O <==> Cu(H2O)42+(blue) + 4Cl- exothermic or endothermic?arrow_forwardIf we react tetraethoxypropane with hydrazine, what is the product obtained (explain its formula). State the reason why the corresponding dialdehyde is not used.arrow_forwarddrawing, no aiarrow_forward
- If CH3COCH2CH(OCH3)2 (4,4-dimethoxy-2-butanone) and hydrazine react, two isomeric products are formed. State their structure and which will be the majority.arrow_forward+ Reset Provide the correct IUPAC name for the compound shown here. 4-methylhept-2-ene (Z)- (E)- 1-6-5-2-3-4- cyclo iso tert- sec- di tri hept hex oct meth eth pent ane yne ene ylarrow_forward+ Provide the correct IUPAC name for the compound shown here. Reset H3C H H C CH3 CH-CH3 1-3-methylpent ene trans- cis- 5-6-3-1-2-4- tert- tri sec- di cyclo iso but pent hex meth prop eth yl ane ene yne ☑arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





