Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
4th Edition
ISBN: 9781119285915
Author: Seborg
Publisher: WILEY
Question
Book Icon
Chapter 6, Problem 6.19E
Interpretation Introduction

(a)

Interpretation:

Mathematical model for the given process is to be determined.

Concept introduction:

For chemical processes, dynamic models consisting ordinary differential equations are derived through unsteady-state conservation laws. These laws generally include mass and energy balances.

The process models generally include algebraic relationships which commence from thermodynamics, transport phenomena, chemical kinetics, and physical properties of the processes.

Interpretation Introduction

(b)

Interpretation:

The transfer function which relates the output concentration (C2) of A to its inlet concentration (C0) is to be derived.

Concept introduction:

For chemical processes, dynamic models consisting ordinary differential equations are derived through unsteady-state conservation laws. These laws generally include mass and energy balances.

The process models generally include algebraic relationships which commence from thermodynamics, transport phenomena, chemical kinetics, and physical properties of the processes.

For a function f(t), the Laplace transform is given by,

F(s)=L[f(t)]=0f(f)estdt

Here, F(s) represents the Laplace transform, s is a variable which is complex and independent, f(t) is any function of time which is being transformed, and L is the operator which is defined by an integral.

f(t) is calculated by taking inverse Laplace transform of the function F(s).

The difference in the actual variable (y) and the original variable (y¯) is known as deviation variable (y). It is generally used while modelling a process. Mathematically it is defined as:

y=yy¯

In steady-state process, the accumulation in the process is taken as zero.

Interpretation Introduction

(c)

Interpretation:

It is to be verified that the transfer function for the given system becomes equivalent to the transfer function for two tanks connected in series if R0, that is, no recycle takes place.

Concept introduction:

For chemical processes, dynamic models consisting ordinary differential equations are derived through unsteady-state conservation laws. These laws generally include mass and energy balances.

The process models generally include algebraic relationships which commence from thermodynamics, transport phenomena, chemical kinetics, and physical properties of the processes.

For a function f(t), the Laplace transform is given by,

F(s)=L[f(t)]=0f(f)estdt

Here, F(s) represents the Laplace transform, s is a variable which is complex and independent, f(t) is any function of time which is being transformed, and L is the operator which is defined by an integral.

f(t) is calculated by taking inverse Laplace transform of the function F(s).

The difference in the actual variable (y) and the original variable (y¯) is known as deviation variable (y). It is generally used while modelling a process. Mathematically it is defined as:

y=yy¯

In steady-state process, the accumulation in the process is taken as zero.

Interpretation Introduction

(d)

Interpretation:

It is to be shown that the transfer function for the given system becomes equivalent to the transfer function for a single tank with twice the volume (2V) and gain of one if R, that is, very large recycle takes place and k=0.

Concept introduction:

For chemical processes, dynamic models consisting ordinary differential equations are derived through unsteady-state conservation laws. These laws generally include mass and energy balances.

The process models generally include algebraic relationships which commence from thermodynamics, transport phenomena, chemical kinetics, and physical properties of the processes.

For a function f(t), the Laplace transform is given by,

F(s)=L[f(t)]=0f(f)estdt

Here, F(s) represents the Laplace transform, s is a variable which is complex and independent, f(t) is any function of time which is being transformed, and L is the operator which is defined by an integral.

f(t) is calculated by taking inverse Laplace transform of the function F(s).

The difference in the actual variable (y) and the original variable (y¯) is known as deviation variable (y). It is generally used while modelling a process. Mathematically it is defined as:

y=yy¯

In steady-state process, the accumulation in the process is taken as zero.

Blurred answer
Students have asked these similar questions
please provide me the solution with more details. because the previous solution is not clear
please, provide me the solution with details.
please, provide me the solution with details
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The