(a)
Interpretation:
An expression for
Concept introduction:
For chemical processes, dynamic models consisting of ordinary differential equations are derived through unsteady-state conservation laws. These laws generally include mass and energy balances.
The process models generally include algebraic relationships which commence from
For an additive process model, the output of the entire process is the sum of all the outputs of all the processes taking place internally of the system. Thus,
Here,
For a function
Here,
(b)
Interpretation:
The values of
Concept introduction:
For chemical processes, dynamic models consisting of ordinary differential equations are derived through unsteady-state conservation laws. These laws generally include mass and energy balances.
The process models generally include algebraic relationships which commence from thermodynamics, transport phenomena, chemical kinetics, and physical properties of the processes.
For an additive process model, the output of the entire process is the sum of all the outputs of all the processes taking place internally of the system. Thus,
Here,
For a function
Here,
The maximum value of the response of a system to achieve its peak from the desired response of the given system is known as overshoot. It exceeds its final steady-state value.
(c)
Interpretation:
The overall transfer function
Concept introduction:
For chemical processes, dynamic models consisting ordinary differential equations are derived through unsteady-state conservation laws. These laws generally include mass and energy balances.
The process models generally include algebraic relationships which commence from thermodynamics, transport phenomena, chemical kinetics, and physical properties of the processes.
For an additive process model, the output of the entire process is the sum of all the outputs of all the processes taking place internally of the system. Thus,
Here,
For a function
Here,
(d)
Interpretation:
An expression for the overall process gain is to be determined.
Concept introduction:
For chemical processes, dynamic models consisting of ordinary differential equations are derived through unsteady-state conservation laws. These laws generally include mass and energy balances.
The process models generally include algebraic relationships which commence from thermodynamics, transport phenomena, chemical kinetics, and physical properties of the processes.
Over process gain of a transfer function
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Process Dynamics and Control, 4e
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The