Chemistry: Principles and Practice
Chemistry: Principles and Practice
3rd Edition
ISBN: 9780534420123
Author: Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 6, Problem 6.126QE

(a)

Interpretation Introduction

Interpretation:

The root mean square speed of samples of hydrogen and nitrogen at STP conditions has to be calculated.

Concept Introduction:

In accordance with the Kinetic molecular theory, not all of the gas particles will move at the same speed but with an average speed that is given by the expression as follows:

  KE¯=12mu2¯

Here,

KE¯ is the average kinetic energy.

m is the mass of particle.

u2 is the average of the speed.

The relation between rms speed (urms), temperature, and molar mass is given by the equation,

  urms=3RTM

Here,

R is the universal gas constant.

T denotes temperature in kelvins.

M denotes the molar mass in kg/mol.

(a)

Expert Solution
Check Mark

Answer to Problem 6.126QE

Root mean square speed of samples of hydrogen and nitrogen at STP is 583.48 m/s and 697.25 m/s respectively.

Explanation of Solution

The formula to convert degree Celsius to kelvin is as follows:

  T(K)=T(°C)+273 K        (1)

Here,

T(K) denotes the temperature in kelvins.

T(°C) denotes the temperature in Celsius.

Substitute °C for T(°C) in equation (1).

  T(K)=0 °C+273 K=273 K

The relation between rms speed, temperature, and molar mass is given as follows:

  urms=3RTM        (2)

Here,

R is the universal gas constant.

T denotes temperature in kelvins.

M denotes the molar mass in kg/mol.

Substitute 8.314 kgm2/s2molK for R, 273 K for T, 0.020 kg/mol for M to calculate the rms speed of hydrogen inequation (2).

  urms=3(8.314 kgm2/s2molK)(273 K)0.020 kg/mol=583.48 m/s

Substitute 8.314 kgm2/s2molK for R, 273 K for T, 0.014 kg/mol for M to calculate the rms speed of nitrogen inequation (2).

  urms=3(8.314 kgm2/s2molK)(273 K)0.014006 kg/mol=697.25 m/s

(b)

Interpretation Introduction

Interpretation:

The average kinetic energy of hydrogen and nitrogen at STP conditions has to be calculated.

Concept Introduction:

In accordance with the Kinetic molecular theory not all of the gas particles will move at the same speed but with an average speed that is given by the expression as follows:

  Average Kinetic energy=12m(urms)2

Here,

m is the mass of gas particles.

urms is the root mean square speed.

(b)

Expert Solution
Check Mark

Answer to Problem 6.126QE

The average kinetic energy of hydrogen and nitrogen at STP is 5.65340×1021 kgm2/s2 and 5.64704×1021 kgm2/s2.

Explanation of Solution

The formula to calculate the mass from the number of moles and molar mass is as follows:

  m=(Given number of moleculesAvogadro's number of molecules)(molar mass)        (3)

Substitute 1 for a given number of molecules, 6.022×1023 for Avogadro’s number of molecules, 0.020 g/mol for molar mass in equation (3).

  m=(16.022×1023mol)(0.020 kg/mol)=3.32115×1026 kg

Substitute 1 for given number of molecules, 6.022×1023 for Avogadro’s number of molecules, 0.014 kg/mol for molar mass in equation (3).

  m=(16.022×1023mol)(0.014 kg/mol)=2.3248×1026 kg

The average kinetic energy in terms of rms speed is given by the expression as follows:

  Average Kinetic energy=12m(urms)2

Substitute 3.32115×1026 kg for m, 583.48 m/s for urms equation (4) to calculate the average kinetic energy of hydrogen.

  Average Kinetic energy=12(3.32115×1026 kg)(583.48 m/s)2=5.65340×1021 kgm2/s2

Substitute 2.3248×1026 kg for m, 583.48 m/s for u¯rms equation (4) to calculate the average kinetic energy of nitrogen.

  Average Kinetic energy=12(2.3248×1026 kg)(697.25 m/s)2=5.64704×1021 kgm2/s2

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Nido-boranes are structures with the molecular formula BnHn+4 that exhibit B-B, B-H-B and B-H bonds. Correct?
8:07 AM Wed Dec 18 Final Exam 2024 copy Home Insert Draw Page Layout Formulas Data Review AA 田 General A G fx Alexis Cozort ☑ ⚫ 61% A B D E F H K M N P R S T U 3+ 10 125 mM that yielded peak heights of Aa = 9 1-(a)A sample solution was examined under XRF to quantify the analyte Ce³+. Find the response factor F, when standardized concentration of analyte [Ce³+]A = concentration of internal standard S i.e. [In³*]s = 151 mM was spiked with standardized 1600 and As = 3015 respectively? 11 12 (i)Define F, F = Aa As [A] [S] + X 13 (*Define with variables) 4000 14 15 (ii)Calculate F, F = numeral (You will use the F value in part 1-(b) below) As 16 (*Calculate with numerals) 17 18 1-(b)To determine the unknown conc of analyte [Ce³+], a volume of 15 mL of internal standard S having a concentration [In³+]s = 0.264 M 19 20 was added to 45 mL of unknown, and the mixture was diluted to 100 mL in a volumetric flask. XRF analysis yielded a spectrum, Figure-1, where peak heights A and As are…
All structural types of Boron hydrides exhibit B-B, B-H-B and B-H bonds. Correct?

Chapter 6 Solutions

Chemistry: Principles and Practice

Ch. 6 - Prob. 6.11QECh. 6 - Prob. 6.12QECh. 6 - Prob. 6.13QECh. 6 - Prob. 6.14QECh. 6 - Prob. 6.15QECh. 6 - Prob. 6.16QECh. 6 - Prob. 6.17QECh. 6 - Prob. 6.18QECh. 6 - Prob. 6.19QECh. 6 - Prob. 6.20QECh. 6 - Prob. 6.21QECh. 6 - Prob. 6.22QECh. 6 - Prob. 6.23QECh. 6 - Prob. 6.24QECh. 6 - A 39.6-mL sample of gas is trapped in a syringe...Ch. 6 - Prob. 6.26QECh. 6 - Prob. 6.27QECh. 6 - Prob. 6.28QECh. 6 - The pressure of a 900-mL sample of helium is...Ch. 6 - Prob. 6.30QECh. 6 - Prob. 6.31QECh. 6 - Prob. 6.33QECh. 6 - Prob. 6.34QECh. 6 - Prob. 6.35QECh. 6 - Prob. 6.36QECh. 6 - Prob. 6.37QECh. 6 - Prob. 6.38QECh. 6 - Prob. 6.39QECh. 6 - Prob. 6.40QECh. 6 - Prob. 6.41QECh. 6 - Prob. 6.42QECh. 6 - Prob. 6.43QECh. 6 - Prob. 6.44QECh. 6 - Prob. 6.45QECh. 6 - Prob. 6.46QECh. 6 - Prob. 6.47QECh. 6 - Prob. 6.48QECh. 6 - Prob. 6.49QECh. 6 - Calculate the molar mass of a gas if a 0.165-g...Ch. 6 - Prob. 6.51QECh. 6 - Prob. 6.52QECh. 6 - What is the density of He gas at 10.00 atm and 0...Ch. 6 - Prob. 6.54QECh. 6 - Prob. 6.55QECh. 6 - Prob. 6.56QECh. 6 - Prob. 6.57QECh. 6 - Prob. 6.58QECh. 6 - What volume, in milliliters, of hydrogen gas at...Ch. 6 - Prob. 6.60QECh. 6 - Heating potassium chlorate, KClO3, yields oxygen...Ch. 6 - Prob. 6.62QECh. 6 - Prob. 6.63QECh. 6 - Prob. 6.64QECh. 6 - Prob. 6.65QECh. 6 - Prob. 6.66QECh. 6 - Prob. 6.67QECh. 6 - Assuming the volumes of all gases in the reaction...Ch. 6 - Prob. 6.69QECh. 6 - Prob. 6.70QECh. 6 - Prob. 6.71QECh. 6 - Nitrogen monoxide gas reacts with oxygen gas to...Ch. 6 - Prob. 6.73QECh. 6 - Prob. 6.74QECh. 6 - Prob. 6.75QECh. 6 - Prob. 6.76QECh. 6 - Prob. 6.77QECh. 6 - Prob. 6.78QECh. 6 - Prob. 6.79QECh. 6 - Prob. 6.80QECh. 6 - Prob. 6.81QECh. 6 - What is the total pressure exerted by a mixture of...Ch. 6 - Prob. 6.83QECh. 6 - Prob. 6.84QECh. 6 - Prob. 6.85QECh. 6 - Prob. 6.86QECh. 6 - Prob. 6.87QECh. 6 - Prob. 6.88QECh. 6 - Prob. 6.89QECh. 6 - Prob. 6.90QECh. 6 - Prob. 6.91QECh. 6 - Prob. 6.92QECh. 6 - Prob. 6.93QECh. 6 - Prob. 6.94QECh. 6 - Prob. 6.95QECh. 6 - Prob. 6.96QECh. 6 - Prob. 6.97QECh. 6 - Prob. 6.98QECh. 6 - Prob. 6.99QECh. 6 - Prob. 6.100QECh. 6 - Prob. 6.101QECh. 6 - Prob. 6.102QECh. 6 - Prob. 6.103QECh. 6 - Prob. 6.104QECh. 6 - Prob. 6.105QECh. 6 - Prob. 6.106QECh. 6 - Prob. 6.107QECh. 6 - Prob. 6.108QECh. 6 - Prob. 6.109QECh. 6 - A gas effuses 1.55 times faster than propane...Ch. 6 - For each of the following pairs of gases at the...Ch. 6 - Prob. 6.112QECh. 6 - Prob. 6.113QECh. 6 - Prob. 6.114QECh. 6 - Calculate the pressure, in atm, of 10.2 mol argon...Ch. 6 - Prob. 6.116QECh. 6 - Prob. 6.117QECh. 6 - Prob. 6.118QECh. 6 - Prob. 6.119QECh. 6 - Workers at a research station in the Antarctic...Ch. 6 - Prob. 6.121QECh. 6 - A 1.26-g sample of a gas occupies a volume of 544...Ch. 6 - Prob. 6.123QECh. 6 - Calculate the mass of water produced in the...Ch. 6 - Prob. 6.126QECh. 6 - Prob. 6.127QECh. 6 - Prob. 6.128QECh. 6 - Prob. 6.129QECh. 6 - Prob. 6.130QECh. 6 - Prob. 6.131QECh. 6 - Prob. 6.132QECh. 6 - Prob. 6.133QECh. 6 - Prob. 6.134QECh. 6 - Prob. 6.135QECh. 6 - Prob. 6.136QE
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Step by Step Stoichiometry Practice Problems | How to Pass ChemistryMole Conversions Made Easy: How to Convert Between Grams and Moles; Author: Ketzbook;https://www.youtube.com/watch?v=b2raanVWU6c;License: Standard YouTube License, CC-BY