Chemistry: Principles and Practice
3rd Edition
ISBN: 9780534420123
Author: Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 6.120QE
Workers at a research station in the Antarctic collected a sample of air to test for airborne pollutants. They collected the sample in a 1.00-L container at 764 torr and −20 °C. Calculate the pressure in the container when it was opened for analysis in a particulate-free clean room in a laboratory in South Carolina, at a temperature of 22 °C.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The vapor pressure of mercury at 20 oC is 1.7 x 10-6 atm. Your lab partner breaks a mercury thermometer and spills most of the mercury onto the floor. The dimensions of the laboratory are 16.0 m x 8.0 m x 3.0 m (l x w x h). At 20 oC, calculate the mass (in grams) of the mercury vapor in the room. Determine if the concentration of mercury vapor exceeds air quality regulations of 5.0 x 10-2 mg/m3. How would you clean up this spell?
Although ozone is an important component of the upper atmosphere, long-term exposure to ozone in the air we breathe can cause inflammation of the lung, impairment of lung defense mechanisms, and irreversible changes in lung structure. The EPA has set an 8 hour limit for ozone of 0.08 ppm as an air quality standard for cities. At the EPA limit, how many ozone molecules are present in 5.0 liters of air at 25 °C and 0.967 atm? (Hint: assume that air is an ideal gas and calculate the total number of molecules there are in 5.0 L. Then use the definition of ppm.)
The volume of a sample of pure HCl gas was 289 mL at 24
°
C and 137 mmHg. It was completely dissolved in about 50 mL of water and titrated with an NaOH solution;
11.7 mL
of the NaOH solution was required to neutralize the HCl. Calculate the molarity of the NaOH solution.
Chapter 6 Solutions
Chemistry: Principles and Practice
Ch. 6 - Prob. 6.1QECh. 6 - Prob. 6.2QECh. 6 - Prob. 6.3QECh. 6 - Prob. 6.4QECh. 6 - Prob. 6.5QECh. 6 - Prob. 6.6QECh. 6 - Prob. 6.7QECh. 6 - Prob. 6.8QECh. 6 - Prob. 6.9QECh. 6 - Prob. 6.10QE
Ch. 6 - Prob. 6.11QECh. 6 - Prob. 6.12QECh. 6 - Prob. 6.13QECh. 6 - Prob. 6.14QECh. 6 - Prob. 6.15QECh. 6 - Prob. 6.16QECh. 6 - Prob. 6.17QECh. 6 - Prob. 6.18QECh. 6 - Prob. 6.19QECh. 6 - Prob. 6.20QECh. 6 - Prob. 6.21QECh. 6 - Prob. 6.22QECh. 6 - Prob. 6.23QECh. 6 - Prob. 6.24QECh. 6 - A 39.6-mL sample of gas is trapped in a syringe...Ch. 6 - Prob. 6.26QECh. 6 - Prob. 6.27QECh. 6 - Prob. 6.28QECh. 6 - The pressure of a 900-mL sample of helium is...Ch. 6 - Prob. 6.30QECh. 6 - Prob. 6.31QECh. 6 - Prob. 6.33QECh. 6 - Prob. 6.34QECh. 6 - Prob. 6.35QECh. 6 - Prob. 6.36QECh. 6 - Prob. 6.37QECh. 6 - Prob. 6.38QECh. 6 - Prob. 6.39QECh. 6 - Prob. 6.40QECh. 6 - Prob. 6.41QECh. 6 - Prob. 6.42QECh. 6 - Prob. 6.43QECh. 6 - Prob. 6.44QECh. 6 - Prob. 6.45QECh. 6 - Prob. 6.46QECh. 6 - Prob. 6.47QECh. 6 - Prob. 6.48QECh. 6 - Prob. 6.49QECh. 6 - Calculate the molar mass of a gas if a 0.165-g...Ch. 6 - Prob. 6.51QECh. 6 - Prob. 6.52QECh. 6 - What is the density of He gas at 10.00 atm and 0...Ch. 6 - Prob. 6.54QECh. 6 - Prob. 6.55QECh. 6 - Prob. 6.56QECh. 6 - Prob. 6.57QECh. 6 - Prob. 6.58QECh. 6 - What volume, in milliliters, of hydrogen gas at...Ch. 6 - Prob. 6.60QECh. 6 - Heating potassium chlorate, KClO3, yields oxygen...Ch. 6 - Prob. 6.62QECh. 6 - Prob. 6.63QECh. 6 - Prob. 6.64QECh. 6 - Prob. 6.65QECh. 6 - Prob. 6.66QECh. 6 - Prob. 6.67QECh. 6 - Assuming the volumes of all gases in the reaction...Ch. 6 - Prob. 6.69QECh. 6 - Prob. 6.70QECh. 6 - Prob. 6.71QECh. 6 - Nitrogen monoxide gas reacts with oxygen gas to...Ch. 6 - Prob. 6.73QECh. 6 - Prob. 6.74QECh. 6 - Prob. 6.75QECh. 6 - Prob. 6.76QECh. 6 - Prob. 6.77QECh. 6 - Prob. 6.78QECh. 6 - Prob. 6.79QECh. 6 - Prob. 6.80QECh. 6 - Prob. 6.81QECh. 6 - What is the total pressure exerted by a mixture of...Ch. 6 - Prob. 6.83QECh. 6 - Prob. 6.84QECh. 6 - Prob. 6.85QECh. 6 - Prob. 6.86QECh. 6 - Prob. 6.87QECh. 6 - Prob. 6.88QECh. 6 - Prob. 6.89QECh. 6 - Prob. 6.90QECh. 6 - Prob. 6.91QECh. 6 - Prob. 6.92QECh. 6 - Prob. 6.93QECh. 6 - Prob. 6.94QECh. 6 - Prob. 6.95QECh. 6 - Prob. 6.96QECh. 6 - Prob. 6.97QECh. 6 - Prob. 6.98QECh. 6 - Prob. 6.99QECh. 6 - Prob. 6.100QECh. 6 - Prob. 6.101QECh. 6 - Prob. 6.102QECh. 6 - Prob. 6.103QECh. 6 - Prob. 6.104QECh. 6 - Prob. 6.105QECh. 6 - Prob. 6.106QECh. 6 - Prob. 6.107QECh. 6 - Prob. 6.108QECh. 6 - Prob. 6.109QECh. 6 - A gas effuses 1.55 times faster than propane...Ch. 6 - For each of the following pairs of gases at the...Ch. 6 - Prob. 6.112QECh. 6 - Prob. 6.113QECh. 6 - Prob. 6.114QECh. 6 - Calculate the pressure, in atm, of 10.2 mol argon...Ch. 6 - Prob. 6.116QECh. 6 - Prob. 6.117QECh. 6 - Prob. 6.118QECh. 6 - Prob. 6.119QECh. 6 - Workers at a research station in the Antarctic...Ch. 6 - Prob. 6.121QECh. 6 - A 1.26-g sample of a gas occupies a volume of 544...Ch. 6 - Prob. 6.123QECh. 6 - Calculate the mass of water produced in the...Ch. 6 - Prob. 6.126QECh. 6 - Prob. 6.127QECh. 6 - Prob. 6.128QECh. 6 - Prob. 6.129QECh. 6 - Prob. 6.130QECh. 6 - Prob. 6.131QECh. 6 - Prob. 6.132QECh. 6 - Prob. 6.133QECh. 6 - Prob. 6.134QECh. 6 - Prob. 6.135QECh. 6 - Prob. 6.136QE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- How does hydraulic fracturing differ from previously used techniques for the recovery of natural gas from the earth?arrow_forwardGiven that a sample of air is made up of nitrogen, oxygen, and argon in the mole fractions 0.78 N2, 0.21 O2, and 0.010 Ar, what is the density of air at standard temperature and pressure?arrow_forwardIn the discussion on the composition of air, mention is made of the fact that water vapor may have a concentration as high as 40,000 ppm. Calculate the partial pressure exerted by water vapor at this concentration. Assume that this represents a situation with 100% humidity. What temperature would be needed to achieve this value? (See Appendix G.)arrow_forward
- The atmosphere is a highly complex gaseous mixture that sustains life on Earth. Approximately 99% of the air is composed of nitrogen (N2) and oxygen (O2). The remaining 1% is made up of a variety of other gases, including carbon monoxide (CO), hydrogen (H2), and ammonia (NH3), among many others. Because most of the gases that comprise the atmosphere are present at very low levels (<0.002%), their quantities are often expressed in parts per million (ppm) or parts per billion (ppb) rather than as a percent. Ozone (O3) is found in the troposphere at 2.5×10−6%. Convert this value to parts per million. [O3]= _______ ppm The atmosphere contains 2.9×10−7%2.9×10−7% nitrogen dioxide (NO2). Convert this value to parts per billion. [NO2]= _______ ppb Atmospheric methane (CH4) is present at 1983 ppb. Convert this value to a percentage. [CH4]= _______ %arrow_forwardWhen solid calcium carbonate is reacted with aqueous hydrochloric acid, the products of the reaction include aqueous calcium chloride, liquid water, and gaseous carbon dioxide. Calculate the volume of CO2 gas (in L) collected over water at 25.0 °C when 35.5 g of calcium carbonate is added to excess hydrochloric acid if the total pressure is 911.0 mmHg. The vapor pressure of water at 25.0 °C is 23.8 mmHg. Larrow_forwardWhen solid calcium carbonate is reacted with aqueous hydrochloric acid, the products of the reaction include aqueous calcium chloride, liquid water, and gaseous carbon dioxide. Calculate the volume of CO₂ gas (in L) collected over water at 25.0 °C when 39.1 g of calcium carbonate is added to excess hydrochloric acid if the total pressure is 911.0 mmHg. The vapor pressure of water at 25.0 °C is 23.8 mmHg.arrow_forward
- Calculate the number of CO molecules in 1.1 L of this air at a pressure of 760 torr and a temperature of 22 ∘C.arrow_forwardA piece of magnesium reacts with an aqueous solution of HCl to produce H2 gas. The hydrogen gas is collected over the HCl solution at a temperature of 22.0°C. If the total pressure of the system is 0.957 atm, and the volume of gas collected is 710. mL, what are the partial pressure and the mass of H2 produced? (You may assume that the dissolved HCl has no effect on the vapor pressure of water, which is 19.8 torr at 22.0°C.) partial pressure Massarrow_forwardA piece of magnesium reacts with an aqueous solution of HCl to produce H2 gas. The hydrogen gas is collected over the HCl solution at a temperature of 22.0°C. If the total pressure of the system is 0.965 atm, and the volume of gas collected is 780. mL, what are the partial pressure and the mass of H2 produced? (You may assume that the dissolved HCl has no effect on the vapor pressure of water, which is 19.8 torr at 22.0°C.)arrow_forward
- What is the experimental molar mass (that is, calculated from the data given and not taken from the periodic table) of magnesium if 0.0208 grams of magnesium generates 21.25 mL of hydrogen at 19.1 °C with a hydrogen partial pressure of 735.4 torr? Note that the partial pressure of water vapor has already been subtracted from the total pressure.arrow_forwardA sample of 3.73 mol of argon is confined at low pressure in a volume at a temperature of 61 C. Describe quantitatively the effects of each of the following changes on the pressure, the average kinetic energy per molecule in the gas, and the root-mean-square speed. (a) The temperature is increased to 177 °C. (b) The volume is tripled. (c) The amount of argon is decreased to 1.96 mol. Give each answer as a decimal factor of the form: new value = factor old value. A factor of 1 means no change. Change KEavg Urms (а) (b) (c)arrow_forwardSulfur dioxide reacts with oxygen in the presence of plati- num to give sulfur trioxide: 2 SO2(g) + O2(g) → 2 SO3(g) Suppose that at one stage in the reaction, 26.0 mol SO2, 83.0 mol O2, and 17.0 mol SO3 are present in the reaction vessel at a total pressure of 0.950 atm. Calculate the mole fraction of SO3 and its partial pressure.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Step by Step Stoichiometry Practice Problems | How to Pass ChemistryMole Conversions Made Easy: How to Convert Between Grams and Moles; Author: Ketzbook;https://www.youtube.com/watch?v=b2raanVWU6c;License: Standard YouTube License, CC-BY