Applied Physics (11th Edition)
11th Edition
ISBN: 9780134159386
Author: Dale Ewen, Neill Schurter, Erik Gundersen
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 5RP
A 4.00-g bullet is fired from a 4.50-kg gun with a muzzle velocity of 625 m/s. What is the speed of the recoil of the gun?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Just 5 and 6 don't mind 7
In an electron gun, electrons are accelerated through a region with an electric field of magnitude 1.5 × 104 N/C for a distance of 2.5 cm. If the electrons start from rest, how fast are they moving after traversing the gun?
Please solve and answer this problem correctly please. Thank you!!
Chapter 6 Solutions
Applied Physics (11th Edition)
Ch. 6.1 - Find the momentum of each object. 1. m = 2.00 kg, ...Ch. 6.1 - Find the momentum of each object. 2. m = 5.00 kg, ...Ch. 6.1 - Find the momentum of each object. 3. m = 17.0...Ch. 6.1 - Find the momentum of each object. 4. m = 38.0 kg, ...Ch. 6.1 - Find the momentum of each object. 5. m = 38 105...Ch. 6.1 - Find the momentum of each object. 6. m = 3.84 kg, ...Ch. 6.1 - Find the momentum of each object. 7. Fw = 1.50 ...Ch. 6.1 - Find the momentum of each object. 8. Fw = 3200 lb,...Ch. 6.1 - a. Find the momentum of a heavy automobile...Ch. 6.1 - a. Find the momentum of a bullet of mass 1.00 103...
Ch. 6.1 - a. Find the momentum of an automobile of mass 2630...Ch. 6.1 - A ball of mass 0.50 kg is thrown straight up at...Ch. 6.1 - A bullet with mass 60.0 g is fired with an initial...Ch. 6.1 - A cannon is mounted on a railroad car. The cannon...Ch. 6.1 - A 125-kg pile driver falls from a height of 10.0 m...Ch. 6.1 - A person is traveling 75.0 km/h in an automobile...Ch. 6.1 - A 75.0-g bullet is fired with a muzzle velocity of...Ch. 6.1 - A 40.0-grain bullet is fired at a muzzle velocity...Ch. 6.1 - a. What force is required to stop a 1250-kg car...Ch. 6.1 - (a) What force is required to slow a 1350-kg car...Ch. 6.1 - What force is required to stop a 3000-kg truck...Ch. 6.1 - What force is needed to stop a piece of heavy...Ch. 6.1 - A standard 5.0-oz baseball is thrown and reaches a...Ch. 6.2 - One ball of mass 0.500 kg traveling 6.00 m/s to...Ch. 6.2 - A ball of mass 625 g traveling 4.00 m/s to the...Ch. 6.2 - A 0.600-kg ball traveling 4.00 m/s to the right...Ch. 6.2 - A 90.0-g disk traveling 3.00 m/s to the right...Ch. 6.2 - A 98.0-kg parts cart with rubber bumpers rolling...Ch. 6.2 - A 75.0-kg paint cart with rubber bumpers is...Ch. 6.2 - A railroad car of mass 2.00 104 kg is traveling...Ch. 6.2 - Find the velocity of the railroad cars in Problem...Ch. 6.2 - One cart of mass 12.0 kg is moving 6.00 m/s to the...Ch. 6.2 - One cart of mass 15.0 kg is moving 5.00 m/s to the...Ch. 6.2 - A 1650-kg automobile moving south 12.0 m/s...Ch. 6.2 - A 16.0-g bullet is shot into a wooden block at...Ch. 6.2 - A 2450-kg automobile moving north 12.0 m/s...Ch. 6.3 - Two motorcycles of equal mass collide at a 90...Ch. 6.3 - Two pickup trucks crash at a 90 intersection. If...Ch. 6.3 - Two vehicles collide at a 90 intersection. If the...Ch. 6.3 - Two vehicles of equal mass collide at a 90...Ch. 6.3 - A vehicle with a mass of 1000kg is going east at a...Ch. 6.3 - Ball A with a mass of 0.500 kg is moving east at a...Ch. 6.3 - A vehicle with mass of 950kg is driving east with...Ch. 6.3 - A vehicle with a mass of 800kg is traveling west...Ch. 6 - Momentum is a equal to speed times weight b equal...Ch. 6 - Impulse is a. a force applied to an object b. the...Ch. 6 - Why do a slow-moving loaded truck and a speeding...Ch. 6 - How are impulse and change in momentum related?Ch. 6 - Why is follow-through important in hitting a...Ch. 6 - Describe in your own words the law of conservation...Ch. 6 - Describe conservation of momentum in terms of a...Ch. 6 - One billiard ball striking another is an example...Ch. 6 - One moving loaded railroad car striking and...Ch. 6 - A father and 8-year-old son are standing on ice...Ch. 6 - A truck with mass 1475 slugs travels 57.0 mi/h....Ch. 6 - A projectile with mass 27.0 kg is fired with a...Ch. 6 - A box is pushed with a force of 125 N for 2.00...Ch. 6 - What is the momentum of a bullet of mass 0.034 kg...Ch. 6 - A 4.00-g bullet is fired from a 4.50-kg gun with a...Ch. 6 - A 150-kg pile driver falls from a height of 7.5 m...Ch. 6 - A 15.0-g bullet is fired at a muzzle velocity of...Ch. 6 - What force is required to slow a 1250-kg car...Ch. 6 - One ball of mass 575 g traveling 3.50 m/s to the...Ch. 6 - A railroad car of mass 2.25 104 kg is traveling...Ch. 6 - A 195-g ball traveling 4.50 m/s to the right...Ch. 6 - Two trucks of equal mass collide at a 90...Ch. 6 - Ball A, of mass 0.35 kg, has a velocity 0.75 m/s...Ch. 6 - A coach knows it is vital that the volleyballs be...Ch. 6 - An automobile accident causes both the driver and...Ch. 6 - Several African tribes engage in a ritual much...Ch. 6 - Sally, who weighs 125 lb, knows that getting out...Ch. 6 - An automobile accident investigator needs to...
Additional Science Textbook Solutions
Find more solutions based on key concepts
3. CAUTION Why is genetic drift aptly named?
a. It causes allele frequencies to drift up or down randomly.
b. I...
Biological Science (6th Edition)
MAKE CONNECTIONS Review the description of meiosis (see Figure 10.8) and Mendels laws of segregation and indepe...
Campbell Biology in Focus (2nd Edition)
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
4. Three groups of nonvascular plants are _______, ______, and _______. Three groups of seedless vascular plant...
Biology: Life on Earth (11th Edition)
In your own words, briefly distinguish between relative dates and numerical dates.
Applications and Investigations in Earth Science (9th Edition)
Fill in the blanks: The nose is to the mouth. The ankle is to the knee. The ring finger is to the inde...
Human Anatomy & Physiology (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Please solve and answer this problem correctly please. Thank you!!arrow_forwarda) Use the node-voltage method to find v1, v2, and v3 in the circuit in Fig. P4.14. b) How much power does the 40 V voltage source deliver to the circuit? Figure P4.14 302 202 w w + + + 40 V V1 80 Ω 02 ΣΑΩ 28 A V3 + w w 102 202arrow_forwardPlease solve and answer this problem correctly please. Thank you!!arrow_forward
- You're on an interplanetary mission, in an orbit around the Sun. Suppose you make a maneuver that brings your perihelion in closer to the Sun but leaves your aphelion unchanged. Then you must have Question 2 options: sped up at perihelion sped up at aphelion slowed down at perihelion slowed down at aphelionarrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE DO NOT USE LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forward
- No chatgpt pls will upvotearrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forward་ The position of a particle is described by r = (300e 0.5t) mm and 0 = (0.3t²) rad, where t is in seconds. Part A Determine the magnitude of the particle's velocity at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. v = Value Submit Request Answer Part B ? Units Determine the magnitude of the particle's acceleration at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. a = Value A ? Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY