Applied Physics (11th Edition)
11th Edition
ISBN: 9780134159386
Author: Dale Ewen, Neill Schurter, Erik Gundersen
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6.1, Problem 20P
(a) What force is required to slow a 1350-kg car traveling 90.0 km/h to 25.0 km/h within 4.00 s? (b) How far does the car travel during its deceleration? (c) How long does it take for the car to come to a complete stop at this same rate of deceleration?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Use the following information to answer the next question.
Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of
42°. The ray of light reflects off mirror B and then enters water, as shown below:
Incident
ray at A
Note: This diagram is not to
scale.
a
Air (n = 1.00)
Water (n = 1.34)
1) Determine the angle of refraction of the ray of light in the water.
B
Hi can u please solve
6. Bending a lens in OpticStudio or OSLO. In either package, create a BK7 singlet lens of 10 mm semi-diameter
and with 10 mm thickness. Set the wavelength to the (default) 0.55 microns and a single on-axis field point at
infinite object distance. Set the image distance to 200 mm. Make the first surface the stop insure that the lens
is fully filled (that is, that the entrance beam has a radius of 10 mm). Use the lens-maker's equation to
calculate initial glass curvatures assuming you want a symmetric, bi-convex lens with an effective focal length
of 200 mm. Get this working and examine the RMS spot size using the "Text" tab of the Spot Diagram analysis
tab (OpticStudio) or the Spd command of the text widnow (OSLO). You should find the lens is far from
diffraction limited, with a spot size of more than 100 microns.
Now let's optimize this lens. In OpticStudio, create a default merit function optimizing on spot size.Then insert
one extra line at the top of the merit function. Assign the…
Chapter 6 Solutions
Applied Physics (11th Edition)
Ch. 6.1 - Find the momentum of each object. 1. m = 2.00 kg, ...Ch. 6.1 - Find the momentum of each object. 2. m = 5.00 kg, ...Ch. 6.1 - Find the momentum of each object. 3. m = 17.0...Ch. 6.1 - Find the momentum of each object. 4. m = 38.0 kg, ...Ch. 6.1 - Find the momentum of each object. 5. m = 38 105...Ch. 6.1 - Find the momentum of each object. 6. m = 3.84 kg, ...Ch. 6.1 - Find the momentum of each object. 7. Fw = 1.50 ...Ch. 6.1 - Find the momentum of each object. 8. Fw = 3200 lb,...Ch. 6.1 - a. Find the momentum of a heavy automobile...Ch. 6.1 - a. Find the momentum of a bullet of mass 1.00 103...
Ch. 6.1 - a. Find the momentum of an automobile of mass 2630...Ch. 6.1 - A ball of mass 0.50 kg is thrown straight up at...Ch. 6.1 - A bullet with mass 60.0 g is fired with an initial...Ch. 6.1 - A cannon is mounted on a railroad car. The cannon...Ch. 6.1 - A 125-kg pile driver falls from a height of 10.0 m...Ch. 6.1 - A person is traveling 75.0 km/h in an automobile...Ch. 6.1 - A 75.0-g bullet is fired with a muzzle velocity of...Ch. 6.1 - A 40.0-grain bullet is fired at a muzzle velocity...Ch. 6.1 - a. What force is required to stop a 1250-kg car...Ch. 6.1 - (a) What force is required to slow a 1350-kg car...Ch. 6.1 - What force is required to stop a 3000-kg truck...Ch. 6.1 - What force is needed to stop a piece of heavy...Ch. 6.1 - A standard 5.0-oz baseball is thrown and reaches a...Ch. 6.2 - One ball of mass 0.500 kg traveling 6.00 m/s to...Ch. 6.2 - A ball of mass 625 g traveling 4.00 m/s to the...Ch. 6.2 - A 0.600-kg ball traveling 4.00 m/s to the right...Ch. 6.2 - A 90.0-g disk traveling 3.00 m/s to the right...Ch. 6.2 - A 98.0-kg parts cart with rubber bumpers rolling...Ch. 6.2 - A 75.0-kg paint cart with rubber bumpers is...Ch. 6.2 - A railroad car of mass 2.00 104 kg is traveling...Ch. 6.2 - Find the velocity of the railroad cars in Problem...Ch. 6.2 - One cart of mass 12.0 kg is moving 6.00 m/s to the...Ch. 6.2 - One cart of mass 15.0 kg is moving 5.00 m/s to the...Ch. 6.2 - A 1650-kg automobile moving south 12.0 m/s...Ch. 6.2 - A 16.0-g bullet is shot into a wooden block at...Ch. 6.2 - A 2450-kg automobile moving north 12.0 m/s...Ch. 6.3 - Two motorcycles of equal mass collide at a 90...Ch. 6.3 - Two pickup trucks crash at a 90 intersection. If...Ch. 6.3 - Two vehicles collide at a 90 intersection. If the...Ch. 6.3 - Two vehicles of equal mass collide at a 90...Ch. 6.3 - A vehicle with a mass of 1000kg is going east at a...Ch. 6.3 - Ball A with a mass of 0.500 kg is moving east at a...Ch. 6.3 - A vehicle with mass of 950kg is driving east with...Ch. 6.3 - A vehicle with a mass of 800kg is traveling west...Ch. 6 - Momentum is a equal to speed times weight b equal...Ch. 6 - Impulse is a. a force applied to an object b. the...Ch. 6 - Why do a slow-moving loaded truck and a speeding...Ch. 6 - How are impulse and change in momentum related?Ch. 6 - Why is follow-through important in hitting a...Ch. 6 - Describe in your own words the law of conservation...Ch. 6 - Describe conservation of momentum in terms of a...Ch. 6 - One billiard ball striking another is an example...Ch. 6 - One moving loaded railroad car striking and...Ch. 6 - A father and 8-year-old son are standing on ice...Ch. 6 - A truck with mass 1475 slugs travels 57.0 mi/h....Ch. 6 - A projectile with mass 27.0 kg is fired with a...Ch. 6 - A box is pushed with a force of 125 N for 2.00...Ch. 6 - What is the momentum of a bullet of mass 0.034 kg...Ch. 6 - A 4.00-g bullet is fired from a 4.50-kg gun with a...Ch. 6 - A 150-kg pile driver falls from a height of 7.5 m...Ch. 6 - A 15.0-g bullet is fired at a muzzle velocity of...Ch. 6 - What force is required to slow a 1250-kg car...Ch. 6 - One ball of mass 575 g traveling 3.50 m/s to the...Ch. 6 - A railroad car of mass 2.25 104 kg is traveling...Ch. 6 - A 195-g ball traveling 4.50 m/s to the right...Ch. 6 - Two trucks of equal mass collide at a 90...Ch. 6 - Ball A, of mass 0.35 kg, has a velocity 0.75 m/s...Ch. 6 - A coach knows it is vital that the volleyballs be...Ch. 6 - An automobile accident causes both the driver and...Ch. 6 - Several African tribes engage in a ritual much...Ch. 6 - Sally, who weighs 125 lb, knows that getting out...Ch. 6 - An automobile accident investigator needs to...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Q1. How many atoms are there in 5.8 mol helium?
a. 23.2 atoms
b. atoms
c. atoms
d. atoms
Introductory Chemistry (6th Edition)
41. Humans vary in many ways from one another. Among many minor phenotypic differences are the following five i...
Genetic Analysis: An Integrated Approach (3rd Edition)
26. The earth’s radius is about 4000 miles. Kampala, the capital of Uganda, and Singapore are both nearly on t...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Calculate the lattice energy of CaCl2 using a Born-Haber cycle and data from Appendices F and L and Table 7.5. ...
Chemistry & Chemical Reactivity
4. The object for a magnifier is usually placed very close to the focal point of the lens, creating a virtual i...
College Physics: A Strategic Approach (3rd Edition)
3. What are serous membranes, and what are their functions?
Human Anatomy & Physiology (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- No chatgpt pls will upvote Already got wrong chatgpt answer .arrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forward
- Good explanation it sure experts solve it.arrow_forwardNo chatgpt pls will upvote Asaparrow_forwardA satellite has a mass of 100kg and is located at 2.00 x 10^6 m above the surface of the earth. a) What is the potential energy associated with the satellite at this loction? b) What is the magnitude of the gravitational force on the satellite?arrow_forward
- No chatgpt pls will upvotearrow_forwardCorrect answer No chatgpt pls will upvotearrow_forwardStatistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.arrow_forward
- Lab-Based Section Use the following information to answer the lab based scenario. A student performed an experiment in an attempt to determine the index of refraction of glass. The student used a laser and a protractor to measure a variety of angles of incidence and refraction through a semi-circular glass prism. The design of the experiment and the student's results are shown below. Angle of Incidence (°) Angle of Refraction (º) 20 11 30 19 40 26 50 31 60 36 70 38 2a) By hand (i.e., without using computer software), create a linear graph on graph paper using the student's data. Note: You will have to manipulate the data in order to achieve a linear function. 2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your answer to the nearest hundredth.arrow_forwardUse the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forwardUse the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY