Artificial gravity in space stations. One problem for humans living in outer space is that they are apparently weightless. One way around this problem is to design a cylindrical space station that spins about an axis through its center at a constant rate. (See Figure 6.33 .) This spin creates “artificial gravity” at the outside rim of the station. (a) If the diameter of the space station is 800.0 m, how fast must the rim be moving in order for the “artificial gravity” acceleration to be g at the outer rim? (b) If the space station is a waiting area for travelers going to Mars, it might be desirable to simulate the acceleration due to gravity on the Martian surface. How fast must the rim move in this case? (c) Make a free-body diagram of an astronaut at the outer rim. Figure 6.33 Problem 53.
Artificial gravity in space stations. One problem for humans living in outer space is that they are apparently weightless. One way around this problem is to design a cylindrical space station that spins about an axis through its center at a constant rate. (See Figure 6.33 .) This spin creates “artificial gravity” at the outside rim of the station. (a) If the diameter of the space station is 800.0 m, how fast must the rim be moving in order for the “artificial gravity” acceleration to be g at the outer rim? (b) If the space station is a waiting area for travelers going to Mars, it might be desirable to simulate the acceleration due to gravity on the Martian surface. How fast must the rim move in this case? (c) Make a free-body diagram of an astronaut at the outer rim. Figure 6.33 Problem 53.
Artificial gravity in space stations. One problem for humans living in outer space is that they are apparently weightless. One way around this problem is to design a cylindrical space station that spins about an axis through its center at a constant rate. (See Figure 6.33.) This spin creates “artificial gravity” at the outside rim of the station. (a) If the diameter of the space station is 800.0 m, how fast must the rim be moving in order for the “artificial gravity” acceleration to be g at the outer rim? (b) If the space station is a waiting area for travelers going to Mars, it might be desirable to simulate the acceleration due to gravity on the Martian surface. How fast must the rim move in this case? (c) Make a free-body diagram of an astronaut at the outer rim.
suggest a reason ultrasound cleaning is better than cleaning by hand?
Checkpoint 4
The figure shows four orientations of an electric di-
pole in an external electric field. Rank the orienta-
tions according to (a) the magnitude of the torque
on the dipole and (b) the potential energy of the di-
pole, greatest first.
(1)
(2)
E
(4)
What is integrated science.
What is fractional distillation
What is simple distillation
Chapter 6 Solutions
Masteringphysics With Pearson Etext - Valuepack Access Card - For College Physics
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.