a)
Interpretation:Value of
Concept introduction:Chemical equilibrium is taken into consideration if rate of forward and backward reactions become equal. At this stage, both reactants and products have constant concentration. It can be studied in terms of pressure also. Equilibrium constant in pressure is denoted by
b)
Interpretation:Equilibrium partial pressures of all gases in below reaction are to be determined.
Concept introduction:Chemical equilibrium is taken into consideration if rate of forward and backward reactions become equal. At this stage, both reactants and products have constant concentration. It can be studied in terms of pressure also. Equilibrium constant in pressure is denoted by
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
EBK CHEMICAL PRINCIPLES
- 12.103 Methanol, CH3OH, can be produced by the reaction of CO with H2, with the liberation of heat. All species in the reaction are gaseous. What effect will each of the following have on the equilibrium concentration of CO? (a) Pressure is increased, (b) volume of the reaction container is decreased, (c) heat is added, (d) the concentration of CO is increased, (e) some methanol is removed from the container, and (f) H2 is added.arrow_forwardWhat is Le Chteliers principle? Consider the reaction 2NOCI(g)2NO(g)+Cl2(g) If this reaction is at equilibrium. what happens when the following changes occur? a. NOCI(g) is added. b. NO(g) is added. c. NOCI(g) is removed. d. Cl2(g) is removed. e. The container volume is decreased. For each of these changes, what happens to the value of K for the reaction as equilibrium is reached again? Give an example of a reaction for which the addition or removal of one of the reactants or products has no effect on the equilibrium position. In general, how will the equilibrium position of a gas-phase reaction be affected if the volume of the reaction vessel changes? Are there reactions that will not have their equilibria shifted by a change in volume? Explain. Why does changing the pressure in a rigid container by adding an inert gas not shift the equilibrium position for a gas-phase reaction?arrow_forwardConsider the system 4 NH3(g) + 3 O2(g) ⇌ 2 N2(g) + 6 H20(ℓ) ΔrH° = −1530.4 kJ/mol How will the amount of ammonia at equilibrium be affected by removing O2(g) without changing the total gas volume? adding N2(g) without changing the total gas volume? adding water without changing the total gas volume? expanding the container? increasing the temperature? Which of these changes (i to v) increases the value of K? Which decreases it?arrow_forward
- At room temperature, the equilibrium constant Kc for the reaction 2 NO(g) ⇌ N2(g) + O2(g) is 1.4 × 1030. Is this reaction product-favored or reactant-favored? Explain your answer. In the atmosphere at room temperature the concentration of N2 is 0.33 mol/L, and the concentration of O2 is about 25% of that value. Calculate the equilibrium concentration of NO in the atmosphere produced by the reaction of N2 and O2. How does this affect your answer to Question 11?arrow_forwardHydrogen and carbon dioxide react at a high temperature to give water and carbon monoxide. H2(g) + CO2(g) H2O(g) + CO(g) (a) Laboratory measurements at 986 C show that there are 0.11 mol each of CO and H2O vapor and 0.087 mol each of H2 and CO2 at equilibrium in a 50.0-L container. Calculate the equilibrium constant for the reaction at 986 C. (b) Suppose 0.010 mol each of H2 and CO2 are placed in a 200.0-L container. When equilibrium is achieved at 986 C, what amounts of CO(g) and H2O(g), in moles, would be present? [Use the value of Kc from part (a).]arrow_forwardThe equilibrium constant Kc for the synthesis of methanol, CH3OH. CO(g)+2H2(g)CH3OH(g) is 4.3 at 250C and 1.8 at 275C. Is this reaction endothermic or exothermic?arrow_forward
- Kc = 5.6 1012 at 500 K for the dissociation of iodine molecules to iodine atoms. I2(g) 2 I(g) A mixture has [I2] = 0.020 mol/Land [I] = 2.0 108 mol/L. Is the reaction at equilibrium (at 500 K)? If not, which way must the reaction proceed to reach equilibrium?arrow_forwardA solution is prepared by dissolving 0.050 mol of diiodocyclohexane, C5H10I2, in the solvent CCl4.The total solution volume is 1.00 L When the reaction C6H10I2 C6H10 + I2 has come to equilibrium at 35 C, the concentration of I2 is 0.035 mol/L. (a) What are the concentrations of C6H10I2 and C6H10 at equilibrium? (b) Calculate Kc, the equilibrium constant.arrow_forward12.101 An engineer working on a design to extract petroleum from a deep thermal reservoir wishes to capture toxic hydrogen sulfide gases present by reaction with aqueous iron(II) nitrate to form solid iron(II) sulfide. (a) Write the chemical equation for this process, assuming that it reaches equilibrium. (b) What is the equilibrium constant expression for this system? (c) How can the process be manipulated so that it does not reach equilibrium, allowing the continuous removal of hydrogen sulfide?arrow_forward
- Nitrosyl chloride, NOC1, decomposes to NO and Cl2 at high temperatures. 2 NOCl(g) ⇌ 2 NO(g) + Cl2(g) Suppose you place 2.00 mol NOC1 in a 1.00–L flask, seal it, and raise the temperature to 462 °C. When equilibrium has been established, 0.66 mol NO is present. Calculate the equilibrium constant Kc for the decomposition reaction from these data.arrow_forwardLexan is a plastic used to make compact discs, eyeglass lenses, and bullet-proof glass. One of the compounds used to make Lexan is phosgene (COCl2), an extremely poisonous gas. Phosgene decomposes by the reaction COCl2(g)CO(g)+Cl2(g) for which Kp 6.8 109 at 100C. If pure phosgene at an initial pressure of 1.0 atm decomposes, calculate the equilibrium pressures of all species.arrow_forwardAt 2300 K the equilibrium constant for the formation of NO(g) is 1.7 103. N2(g) + O2(g) 2 NO(g) (a) Analysis shows that the concentrations of N2 and O2 are both 0.25 M, and that of NO is 0.0042 M under certain conditions. Is the system at equilibrium? (b) If the system is not at equilibrium, in which direction does the reaction proceed? (c) When the system is at equilibrium, what are the equilibrium concentrations?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning