EBK THE COSMIC PERSPECTIVE
9th Edition
ISBN: 9780135161760
Author: Voit
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 51EAP
Close Binary System. Suppose that two stars in a binary star system are separated by a distance of 100 million kilometers and are located at a distance of 100 light-years from Earth. What is the angular separation of the two stars? Give your answer in both degrees and arcseconds. Can the Hubble Space Telescope resolve the two stars?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1. A distant galaxy has an apparent magnitude of 10 and is 4,000 kpc away. What is its absolute magnitude? (Round your answer to at least one decimal place.)
The difference in absolute magnitude between two objects viewed from the same distance is related to their fluxes by the flux-magnitude relation.
FA/FB= 2.51(MB − MA)
2. How does the absolute magnitude of this galaxy compare to the Milky Way
(M = −21)?
Problem 5. Imagine that you observe a star field twice, with a six-month gap between
your observations, and that you see the two sets of stars shown below. Which do you think
is closest to the observer?
Figure 1: Schematic of image of stars A,B, and P taken six months apart.
Problem 6. Suppose the angular separation between stars A and B is 0.5 arcseconds. How
far would you estimate star P to lie from the observer?
The telescope and CCD camera described
in question 2 are scheduled to observe
the star cluster M67 at 22:00 GMT on
02/03/2022. Using Stellarium, determine
whether or not this is a good time to
observe the cluster. Choose the answer
below that best matches your
conclusions.
a. No - the cluster is not visible from
London at this date and time.
b. The cluster is visible but the full Moon
is close by and so will interfere with the
observations.
c. The cluster is visible but is very close to
the horizon and so will be difficult to
observe.
d. The cluster M67 is never visible in the
sky from London so we should
abandon any plans to observe it.
e. Yes this is a good time to observe the
cluster as it is well placed in the sky for
viewing and the moon is not visible.
Chapter 6 Solutions
EBK THE COSMIC PERSPECTIVE
Ch. 6 - Prob. 1VSCCh. 6 - Prob. 2VSCCh. 6 - Prob. 3VSCCh. 6 - Prob. 4VSCCh. 6 - How does your eye focus light? How is a glass lens...Ch. 6 - How does a camera record light? How are images...Ch. 6 - What are the two key properties of a telescope,...Ch. 6 - What is the diffraction limit, and how does it...Ch. 6 - How do reflecting telescopes differ from...Ch. 6 - What are the three basic categories of...
Ch. 6 - Prob. 7EAPCh. 6 - What do we mean by spectral resolution? Why is...Ch. 6 - List at least three ways in which Earth's...Ch. 6 - 10. Describe how deeply each portion of the...Ch. 6 - Prob. 11EAPCh. 6 - Prob. 12EAPCh. 6 - Prob. 13EAPCh. 6 - Prob. 14EAPCh. 6 - Prob. 15EAPCh. 6 - Prob. 16EAPCh. 6 - Prob. 17EAPCh. 6 - Prob. 18EAPCh. 6 - Prob. 19EAPCh. 6 - Prob. 20EAPCh. 6 - Prob. 21EAPCh. 6 - Prob. 22EAPCh. 6 - Prob. 23EAPCh. 6 - Prob. 24EAPCh. 6 - Prob. 25EAPCh. 6 - Prob. 26EAPCh. 6 - Prob. 27EAPCh. 6 - Prob. 28EAPCh. 6 - Prob. 29EAPCh. 6 - Prob. 30EAPCh. 6 - Prob. 31EAPCh. 6 - Prob. 32EAPCh. 6 - Prob. 37EAPCh. 6 - Prob. 38EAPCh. 6 - Prob. 39EAPCh. 6 - Prob. 40EAPCh. 6 - Prob. 41EAPCh. 6 - Prob. 42EAPCh. 6 - Prob. 43EAPCh. 6 - Prob. 44EAPCh. 6 - Prob. 45EAPCh. 6 - Prob. 46EAPCh. 6 - Prob. 50EAPCh. 6 - Close Binary System. Suppose that two stars in a...Ch. 6 - Prob. 52EAPCh. 6 - Diffraction Limit of the Eye. Calculate the...Ch. 6 - Prob. 54EAPCh. 6 - Prob. 55EAPCh. 6 - Hubble’s Field of View. Large telescopes often...Ch. 6 - Prob. 57EAPCh. 6 - Visible-Light Interferometry. Technological...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Give the IUPAC name for each compound.
Organic Chemistry
To test your knowledge, discuss the following topics with a study partner or in writing ideally from memory. Th...
HUMAN ANATOMY
Sea turtles have disappeared from many regions, and one way of trying to save them is to reintroduce them to ar...
MARINE BIOLOGY
An obese 55-year-old woman consults her physician about minor chest pains during exercise. Explain the physicia...
Biology: Life on Earth with Physiology (11th Edition)
Q2. Which statement best defines chemistry?
a. The science that studies solvents, drugs, and insecticides
b. Th...
Introductory Chemistry (6th Edition)
Define histology.
Fundamentals of Anatomy & Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 1arrow_forward3. The closest star to the Earth (other than the sun) is Alpha Centauri, which is 4.3 light years away from us. a. Consider the equation for parallax angle written in terms of au and pc (write it down). What is the parallax angle a in arcsec to Alpha Centauri as seen from Earth? Show your work and use complete sentences.arrow_forward"51 Pegasi" is the name of the first normal star (besides the Sun) around which a planet was discovered. It is in the constellation Pegasus the horse. Its parallax is measured to be 0.064 arcsec. a. What is its distance from us? b. The apparent brightness is 1.79 × 10-10 J/(s·m2 ). What is the luminosity? How does that compare with that of the Sun? Look up the temperature: how doarrow_forward
- a) Calculate the period of the solar system's orbit around the Milky Way. Assume that we are 8.5 kpc from the galactic center and assume that the mass of the Milky Way interior to our orbit is ~ 10¹¹ solar masses. Alpha Centauri is a multiple star system only 1.34 parsecs away. The apparent magnitudes of the two main stars are: a Cen A: my = +0.01; a Cen B: my = +1.33. b) Calculate the ratio of the flux we receive in the V filter from a Cen A to the flux we receive from a Cen B. c) Calculate the absolute magnitude My of a Cen B.arrow_forwardChoose the correct statements concerning spectral classes of stars. (Give ALL correct answers, i.e., B, AC, BCD...) A) Neutral hydrogen lines dominate the spectrum for stars with temperatures around 10,000 K because a lot of the hydrogen is in the n=2 level. B) Hydrogen lines are weak in type O-stars because most of it is completely ionized. C) Oh Be A Fine Guy/Girl Kiss Me, is a mnemonic for remembering spectral classes. D) The spectral sequence has recently been expanded to include L, T, and Y classes. E) K-stars are dominated by lines from ionized helium because they are so hot. F) The spectral types of stars arise primarily as a result of differences in temperature.arrow_forwardOn Earth, the parallax angle measured for the star Procyon is 0.29 arcseconds. If you were to measure Procyon's parallax angle from Venus, what would the parallax angle be? (Note: Earth's orbital radius is larger than Venus's orbital radius.) A. more than 0.29 arcseconds O B. 0.29 arcseconds O C. less than 0.29 arcseconds D. zero arcseconds (no parallax)arrow_forward
- New stars form in regions where the density of gas and dust is relatively high. Suppose you wanted to search for some recently formed stars. Would you more likely be successful if you observed at visible wavelengths or at infrared wavelengths? Why?arrow_forward1. If a star has a surface temperature of 3000 K but a luminosity 150 times greater than our Sun, what size is this star? Give your answer in units of the solar radius. 2. At what wavelengths do stars of surface temperates 20 000 K, 10 000 K, and 3000 K have their peak intensity? 3. If the Hα absorption line in the spectrum of a galaxy is observed at a wavelength of 6715 ˚A, at what speed is the galaxy moving away from us?arrow_forwardUse this interactive simulation of stellar parallax. Change the distance to the star to values given in column 2. Write down the parallax angle in arcsec for each distance. Convert the parallax angle to radians. Calculate the distance. If your calculation is correct, your number in the last column should be similar to the number in column 2 (NOT THE SAME!). 1 AU is 4.85 x 10-6 pc (Don't write units with your answer!) Measured (true) Parallax angle n (in radians) (use 2 significant D (round your answer to 2 figures) Calculated distance Object Parallax angle (in arcsec) Distance from Position "Sun" in pc decimal places) Nearest 0.5 Intermediate 1 Farthest 1.5arrow_forward
- Considering absolute magnitude M, apparent magnitude m, and distance d. Compute the unknown for each of these stars: a. m = +1.6mag, d = 4.3pc. What is M? b. M = -14.3 mag, m = 10.9 mag. What is d? c. m = -5.6mag, d = 88pc. What is M? d. M = 0.9mag, d = 220pc. What is m?arrow_forwardDistance from Apparent Brightness (rank; brightest, 8 = dimmest) Name of Star Earth (light years) | 1 = Sun Sirius 8.6 Canopus Arcturus 309 3. 36.7 4 Rigel Vega Alpha Centauri Bernard's Star 773 5 25.3 4.3 7 5.9 8 13 What sentence explains why a star can be much farther from Earth than the Sun, but still be bright? nida nenv A. Distance from Earth and apparent brightness are related. B. Bright stars that are farther away are larger than the Sun. C. The higher it appears in the sky, the brighter the star. D. The apparent brightness scale goes up as stars get dimmer. del sdTarrow_forwardTrue or False 8. Almost all stars are in binary systems. The book says: "So far you have been considering the deaths of stars as if they were all single objects that never interact, but more than half of all stars are members of binary star systems."From this, I would not necessarily say that almost all stars are in binary systems based on this alone, but some other information I am finding says up to 85%. However, the numbers seem to be all over the map outside the course material, and I can not find a solid figure in it from what I have looked at. If it helps, Stars and Galaxies, 10th Edition by Seeds and Beckman is my reference material.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY