EBK THE COSMIC PERSPECTIVE
9th Edition
ISBN: 9780135161760
Author: Voit
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 55EAP
To determine
To Find: Diffraction limit on the angular resolution of the dish.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1. If the cross-track angular resolution of a satellite sensor at nadir is given by 1.4 /D where is the
wavelength being observed and D is the aperture size of the sensor, what is the cross-track spatial resolution on the
ground if D = 80 cm and the satellite sensor is at an orbital height of 600 km?
(a) for an infrared sensor observing wavelengths at 20 microns?
(b) for a microwave sensor observing wavelengths at 1.5 cm?
=
11:55
phys.libretexts.org
Submit
Both the Keck Telescope and
Hubble Space Telescope (HST)
observe visible light. Given a
typical visible light wavelength of
500 nm, and the diameters of 10 m
for Keck and 2.4 m for Hubble,
which telescope do you think
would have better angular
resolution? Based on the equation
for angular resolution, what is the
resolution of Keck at 500 nm? Of
HST?
How can we help VIEW
Submit
%D
The telescope of a spy satellite is reputed to be able to resolve objects 9 cm apart from an altitude of 180 km above the surface of Earth.
1) What is the diameter, in meters, of the telescope’s aperture, if its resolution is limited only by diffraction effects? Take 550 nm for the wavelength of light.
Chapter 6 Solutions
EBK THE COSMIC PERSPECTIVE
Ch. 6 - Prob. 1VSCCh. 6 - Prob. 2VSCCh. 6 - Prob. 3VSCCh. 6 - Prob. 4VSCCh. 6 - How does your eye focus light? How is a glass lens...Ch. 6 - How does a camera record light? How are images...Ch. 6 - What are the two key properties of a telescope,...Ch. 6 - What is the diffraction limit, and how does it...Ch. 6 - How do reflecting telescopes differ from...Ch. 6 - What are the three basic categories of...
Ch. 6 - Prob. 7EAPCh. 6 - What do we mean by spectral resolution? Why is...Ch. 6 - List at least three ways in which Earth's...Ch. 6 - 10. Describe how deeply each portion of the...Ch. 6 - Prob. 11EAPCh. 6 - Prob. 12EAPCh. 6 - Prob. 13EAPCh. 6 - Prob. 14EAPCh. 6 - Prob. 15EAPCh. 6 - Prob. 16EAPCh. 6 - Prob. 17EAPCh. 6 - Prob. 18EAPCh. 6 - Prob. 19EAPCh. 6 - Prob. 20EAPCh. 6 - Prob. 21EAPCh. 6 - Prob. 22EAPCh. 6 - Prob. 23EAPCh. 6 - Prob. 24EAPCh. 6 - Prob. 25EAPCh. 6 - Prob. 26EAPCh. 6 - Prob. 27EAPCh. 6 - Prob. 28EAPCh. 6 - Prob. 29EAPCh. 6 - Prob. 30EAPCh. 6 - Prob. 31EAPCh. 6 - Prob. 32EAPCh. 6 - Prob. 37EAPCh. 6 - Prob. 38EAPCh. 6 - Prob. 39EAPCh. 6 - Prob. 40EAPCh. 6 - Prob. 41EAPCh. 6 - Prob. 42EAPCh. 6 - Prob. 43EAPCh. 6 - Prob. 44EAPCh. 6 - Prob. 45EAPCh. 6 - Prob. 46EAPCh. 6 - Prob. 50EAPCh. 6 - Close Binary System. Suppose that two stars in a...Ch. 6 - Prob. 52EAPCh. 6 - Diffraction Limit of the Eye. Calculate the...Ch. 6 - Prob. 54EAPCh. 6 - Prob. 55EAPCh. 6 - Hubble’s Field of View. Large telescopes often...Ch. 6 - Prob. 57EAPCh. 6 - Visible-Light Interferometry. Technological...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is bandwidth in an optical instrument? How does it relate to resolution and noise in an optical instrument?arrow_forwarda. What is the resolving power (in arc seconds) of a 84 cm (33 in.) telescope at a wavelength of 560 nm? b. What do two stars 1.5 arc seconds apart look like through this telescope? - The two points of light are well separated from each other. -The two points of light are only just separated from each other — they are distinguishable but appear to touch. - The two points of light are indistinguishable from each other.arrow_forwardWhat is the limit of resolution for a telescope lens with a diameter of 120 cm when it observes a star at a distance of 4 light-years? Use the wavelength of l = 550 nm in your calculations.arrow_forward
- 4. For a space-based imaging system that uses a fixed size aperture for both visible and infrared sensors, given the characteristics listed, what would be the theoretical resolution for each of the sensors? Aperture diameter = 1.1 m. Visible wavelength = 0.5 micron. IR wavelength = 2.0 micron. Altitude = 400 km. (note: 1 micron = 1E-6 m)arrow_forwardThe large space telescope that has been placed into an Earth orbit has an aperture diameter of 1.4 meters. What angular resolution will this telescope achieve for visible light of wavelength 2 = 6.5 x 10-7 m? Write your answer in "seconds of arc".arrow_forwardCan you please assist with Part 2 of 5?arrow_forward
- The Hubble Space Telescope has a primary mirror with diameter 2.4 m. Suppose you were able to point it at Mars when the planct is at its closest point to the Earth in its orbit, which would be about 55.7 million km from the telescope. How close could two features on the Martian surface be and still be resolved (assume a wavelength in the middle of the visible spectrum - a number you should know at this point, at least approximately)?arrow_forwardThe FAST radio telescope in China is currently the largest in the world, with a diameter of 500 meters. It is able to detect radio waves across a wide spectrum, but let's assume it is "tuned" to a frequency of 1 Giga-Hertz (10°cycles per second). What is the angular resolution limit of the FAST telescope at this frequency?arrow_forward5. Two black flies are sitting 7.52 cm apart on a hamburger bun on a picnic table. A spy satellite with a built-in telescope is orbiting overhead at an altitude of 425 km. What diameter telescope mirror would be needed to resolve the two flies from that distance? Assume light of wavelength 715 nm (just because that's the value I picked-it's about at the end of the red end of the visible spectrum).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning