Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (Chs 1-42) Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition)
4th Edition
ISBN: 9780133953145
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 4CQ
If you know all of the forces acting on a moving object, can you tell the direction the object is moving? If yes, explain how. If no, give an example.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two forces act on an object, as shown in the figure above. F =
5.0 N, F = 1.0 N, 01 = 60°, and 02 = 240°. What is the
magnitude and direction of the x component of the net force on the
object?
Pick the correct answer
о 4.01
4.0î N
O 3.5î N
-4.4î N
O 5.5î N
O 2.0î N
swer Saved
Submit
(Not all questions have been saved)
A car is moving along a frictionless surface with a speed of 2 m/s to the left. You and your friend each come over and push the car at the same time. You exert a force of 6 N to the left, while your friend exerts a force of 6 N to the right.
According to Newton’s first law, how will this action affect the car’s motion?
The car will speed up because your force is in the same direction of the car’s motion, making it speed up.
The car will stop immediately because two balanced forces will cause an object to stop moving.
The car will continue to move 2 m/s to the left because there are balanced forces acting on it.
The car will continue moving to the left but at a slower speed because your friend’s force is going to make the car slow down.
A 3.0 kg object is moving to the right at a constant speed of 2.0 m/s. What is the net force on it?
O ON
6 N
20 N
not enough information
30 N
Chapter 6 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (Chs 1-42) Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition)
Ch. 6 - Are the objects described here in equilibrium...Ch. 6 - A ball tosses straight up has v = 0 at its highest...Ch. 6 - Kat, Matt, and Nat are arguing about why a physics...Ch. 6 - If you know all of the forces acting on a moving...Ch. 6 - An elevator, hanging from a single cable, moves...Ch. 6 - An elevator, hanging from a single cable, moves...Ch. 6 - Are the following statements true or false?...Ch. 6 -
8. An astronaut takes his bathroom scale to the...Ch. 6 -
9. The four balls in FIGURE Q6.9 have been...Ch. 6 - Prob. 10CQ
Ch. 6 - Prob. 11CQCh. 6 - A hand presses down on the book in FIGURE Q6.12....Ch. 6 - Boxes A and B in FIGURES Q6.13 both remain at...Ch. 6 - Suppose you push a hockey puck of mass m across...Ch. 6 - A block pushed along the floor with velocity...Ch. 6 - A crate of fragile dishes is in the back of a...Ch. 6 - Five balls move through the air as shown in FIGURE...Ch. 6 - The three ropes in FIGURE EX6.1 are tied to a...Ch. 6 - The three ropes in FIGURE EX6.2 are tied to a...Ch. 6 - A football coach sits on a sled while two of his...Ch. 6 - A 20 kg loudspeaker is suspended 2.0 m below the...Ch. 6 - A 65 kg gymnast wedges himself between two closely...Ch. 6 - A construction worker with a weight of 850 N...Ch. 6 - In an electricity experiment, a 1.0 g plastic ball...Ch. 6 - The forces in FIGURE EX6.8 act on a 2.0 kg object....Ch. 6 - The forces in FIGURE EX6.9 act on a 2.0 kg object....Ch. 6 - FIGURE EX6.10 shows the velocity graph of a 2.0 kg...Ch. 6 - FIGURE EX6.11 shows the force acting on a 2.0 kg...Ch. 6 - A horizontal rope is tied to a 50 kg box on...Ch. 6 - A 50 kg box hangs from a rope. What is the tension...Ch. 6 - A 2.0 × 107 kg train applies its brakes with the...Ch. 6 - A 8.0 × 104 kg spaceship is at rest in deep space....Ch. 6 - The position of a 2.0 kg mass is given by x = (2t3...Ch. 6 - A woman has mass of 55 kg. a. What is her weight...Ch. 6 - It takes the elevator in a skyscraper 4.0 s to...Ch. 6 - Zach, whose mass is 80 kg, is in an elevator...Ch. 6 - What thrust does a 200 g model rocket need in...Ch. 6 - What thrust does a 200 g model rocket need in...Ch. 6 - A 20,000 kg rocket has a rocket motor that...Ch. 6 - The earth is 1.50 × 1011 m from the sun. The...Ch. 6 - Bonnie and Clyde are sliding a 300 kg bank safe...Ch. 6 - A stubborn, 120 kg mule sits down and refuses to...Ch. 6 - A 10 kg crate is placed on a horizontal conveyor...Ch. 6 - Bob is pulling a 30 kg filing cabinet with a force...Ch. 6 - A rubber-wheeled kg cart rolls down a 15° concrete...Ch. 6 - A 4000 kg truck is parked on a 15° slope. How big...Ch. 6 - A 1500 kg car skids to a halt on a wet road where...Ch. 6 - A 50,000 kg locomotive is traveling at 10 m/s when...Ch. 6 - You and your friend Peter are putting new shingles...Ch. 6 - An Airbus A320 jetliner has a takeoff mass of...Ch. 6 -
34. A medium-sized jet has a 3.8-m-diameter...Ch. 6 - A 75 kg skydiver can be modeled as a rectangular...Ch. 6 - A 6.5-cm-diameter ball has a terminal speed of 26...Ch. 6 - A 2.0 kg object initially at rest at the origin is...Ch. 6 - A 5.0 kg object initially at rest at the origin is...Ch. 6 - The 1000 kg steel beam in FIGURE P6.39 is...Ch. 6 - Henry, whose mass is 95 kg, stands on a bathroom...Ch. 6 - An accident victim with a broken leg is being...Ch. 6 - Seat belts and air bags save lives by reducing the...Ch. 6 - The piston of a machine exerts a constant force on...Ch. 6 - Compressed air is used to fire a 50 g ball...Ch. 6 - a. A rocket of mass m is launched straight up with...Ch. 6 - A rifle with a barrel length of 60 cm fires a 10 g...Ch. 6 - A truck with a heavy load has a total mass of 7500...Ch. 6 - An object of mass m is at rest at the top of a...Ch. 6 - Prob. 49EAPCh. 6 - A baggage handler drops your 10 kg suitcase onto a...Ch. 6 - A 2.0 kg wood block is launched up a wooden ramp...Ch. 6 - It’s a snowy day and you're pulling a friend along...Ch. 6 - A large box of mass M is pulled across a...Ch. 6 - Prob. 54EAPCh. 6 - You're driving along at 25 m/s with your aunt's...Ch. 6 - The 2.0 kg wood box in FIGURE P6.56 slides down a...Ch. 6 - A 1.0 kg wood block is pressed against a vertical...Ch. 6 - A person with compromised pinch strength in his...Ch. 6 - A ball is shot from a compressed-air gun at twice...Ch. 6 - Starting from rest, a 2500 kg helicopter...Ch. 6 - Astronauts in space "weigh" themselves by...Ch. 6 - A particle of mass m moving along the x-axis...Ch. 6 - At t = 0, an object of mass m is at rest at x = 0...Ch. 6 - At t = 0, an object of mass m is at rest at x = 0...Ch. 6 - Prob. 65EAPCh. 6 - A 60 kg skater is gliding across frictionless ice...Ch. 6 - Prob. 67EAPCh. 6 - Problems 68 and 69 show a free-body diagram. For...Ch. 6 - Problems 68 and 69 show a free-body diagram. For...Ch. 6 - Prob. 70EAPCh. 6 - In Problems 70 through 72 you are given the...Ch. 6 - In Problems 70 through 72 you are given the...Ch. 6 - A block of mass m is at rest at the origin at t =...Ch. 6 - A spring-loaded toy gun exerts a variable force on...Ch. 6 - FIGURE CP6.7S shows an accelerometer, a device for...Ch. 6 - An object moving in a liquid experiences a linear...Ch. 6 - Prob. 77EAPCh. 6 - An object with cross section A is shot...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A block of ice (m = 15.0 kg) with an attached rope is at rest on a frictionless surface. You pull the block with a horizontal force of 95.0 N for 1.54 s. a. Determine the magnitude of each force acting on the block of ice while you are pulling. b. With what speed is the ice moving after you are finished pulling? Repeat Problem 71, but this time you pull on the block at an angle of 20.0.arrow_forwardAn object of mass m = 1.00 kg is observed to have an acceleration a with a magnitude of 10.0 m/s2 in a direction 60.0 east of north. Figure P4.29 shows a view of the object from above. The force F2 acting on the object has a magnitude of 5.00 N and is directed north. Determine the magnitude and direction of the one other horizontal force F1 acting on the object. Figure P4.29arrow_forwardGive reasons for the answers to each of the following questions: (a) Clan a normal force be horizontal? (b) Can a normal force be directed vertically downward? (c) Consider a tennis ball in contact with a stationary floor and with nothing else. Can the normal force be different in magnitude from the gravitational force exerted on the ball? (d) Can the force exerted by the floor on the hall be different in magnitude from the force the ball exerts on the floor?arrow_forward
- If a single constant force acts on an object that moves on a straight line, the objects velocity is a linear function of time. The equation v = vi + at gives its velocity v as a function of time, where a is its constant acceleration. What if velocity is instead a linear function of position? Assume that as a particular object moves through a resistive medium, its speed decreases as described by the equation v = vi kx, where k is a constant coefficient and x is the position of the object. Find the law describing the total force acting on this object.arrow_forwardA nurse pushes a cart by exerting a force on the handle at a downward angle 35.0° below the horizontal. The loaded cart has a mass of 28.0 kg, and the force of friction is 60.0 N. (a) Draw a free-body diagram for the system of interest. (b) What force must the nurse exert to move at a constant velocity?arrow_forwardA crate remains stationary after it has been placed on a ramp inclined at an angle with the horizontal. Which of the following statements must be true about the magnitude of the frictional force that acts on the crate? (a) It is larger than the weight of the crate. (b) It is at least equal to the weight of the crate. (c) It is equal to sn. (d) It is greater than the component of the gravitational force acting down the ramp. (e) It is equal to the component of the gravitational force acting down the ramp.arrow_forward
- Calculate the normal force on a 15.0 kg block in the following circumstances: (a) The block is resting on a level surface. (b) The block is resting on a surface tilted up at a 30.0 angle with respect to the horizontal. (c) The block is resting on the floor of an elevator that is accelerating upwards at 3.00 m./s2. (d) The block is on a level surface and a force of 125 N is exerted on it at an angle of 30.0 above the horizontal. (Sec Section 1.5.)arrow_forwardA student takes the elevator up to the fourth floor to see her favorite physics instructor. She stands on the floor of the elevator, which is horizontal. Both the student and the elevator are solid objects, and they both accelerate upward at 5.19 m/s2. This acceleration only occurs briefly at the beginning of the ride up. Her mass is 80.0 kg. What is the normal force exerted by the floor of the elevator on the student during her brief acceleration?arrow_forwardA ball is falling toward the ground. Which of the following statements are false? (a) The force that the ball exerts on Earth is equal in magnitude to the force that Earth exerts on the ball, (b) The ball undergoes the same acceleration as Earth. (c) The magnitude of the force the Earth exerts on the ball is greater than the magnitude of the force the ball exerts on the Earth.arrow_forward
- (a) What is the strength of the weak nuclear force relative to the strong nuclear force? (b) What is the strength of the weak nuclear force relative to the electromagnetic force? Since the weak nuclear force acts at only very short distances, such as inside nuclei, where the strong and electromagnetic forces also act, it might seem surprising that we have any knowledge of it at all. We have such knowledge because the weak nuclear force is responsible for beta decay, a type of nuclear decay not explained by other forces.arrow_forwardYou push an object, initially at rest, across a frictionless floor with a constant force for a time interval t, resulting in a final speed of v for the object. You then repeat the experiment, but with a force that is twice as large. What time interval is now required to reach the same final speed v? (a) 4 t (b) 2 t (c) t (d) t/2 (e) t/4arrow_forwardA force F applied to an object of mass m1 produces an acceleration of 3.00 m/s2. The same force applied to a second object of mass m2 produces an acceleration of 1.00 m/s2. (a) What is the value of the ratio m1/m2? (b) If m1 and m2 are combined into one object, find its acceleration under the action of the force F.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY