Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (Chs 1-42) Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition)
4th Edition
ISBN: 9780133953145
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 62EAP
A particle of mass m moving along the x-axis experiences the net force Fx= ct, where c is a constant. The particle has velocity v0x, at t = 0. Find an algebraic expression for the particle's velocity vx, at a later time t.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A particle of mass 8 kg is undergoing one-dimensional motion. It is subject to a constant force of 35 N, and has an initial speed of 9 m/s. The force is parallel to the initial velocity, both of which are directed in the positive direction along the axis of motion.
What is the change in velocity Δv, in meters per second, of the particle between t = 0 and t = 3 s?
What is the displacement Δx, in meters, of the particle between t = 0 and t = 3 s?
An electron is a subatomic particle (m= 9.11 x 10-31 kg) that is subject to electric forces. An electron
moving in the +x direction accelerates from an initial velocity of +7.31 x 105 m/s to a final velocity
of 1.98 x 106 m/s while traveling a distance of 0.0545 m. The electron's acceleration is due to two
electric forces parallel to the x axis: F₁ = 7.52 x 10-¹7 N, and F2, which points in the -x direction.
Find the magnitudes of (a) the net force acting on the electron and (b) the electric force F2.
F₁
F₁
F₂
F₁
(a) Number i
(b) Number i
VO
X
Units
Units
An electron is a subatomic particle (m = 9.11 x 10-31 kg) that is subject to electric forces. An electron moving in the +x direction
accelerates from an initial velocity of +6.88 x 105 m/s to a final velocity of 2.30 x 106 m/s while traveling a distance of 0.0685 m. The
electron's acceleration is due to two electric forces parallel to the x axis: F₁ = 7.84 x 10-17 N, and F2, which points in the -x direction.
Find the magnitudes of (a) the net force acting on the electron and (b) the electric force F2.
(a) Number
(b) Number
i
eTextbook and Media
Hint
F₂
F₁
! Units N
Units
N
M
ון!
>
F₁
Chapter 6 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (Chs 1-42) Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition)
Ch. 6 - Are the objects described here in equilibrium...Ch. 6 - A ball tosses straight up has v = 0 at its highest...Ch. 6 - Kat, Matt, and Nat are arguing about why a physics...Ch. 6 - If you know all of the forces acting on a moving...Ch. 6 - An elevator, hanging from a single cable, moves...Ch. 6 - An elevator, hanging from a single cable, moves...Ch. 6 - Are the following statements true or false?...Ch. 6 -
8. An astronaut takes his bathroom scale to the...Ch. 6 -
9. The four balls in FIGURE Q6.9 have been...Ch. 6 - Prob. 10CQ
Ch. 6 - Prob. 11CQCh. 6 - A hand presses down on the book in FIGURE Q6.12....Ch. 6 - Boxes A and B in FIGURES Q6.13 both remain at...Ch. 6 - Suppose you push a hockey puck of mass m across...Ch. 6 - A block pushed along the floor with velocity...Ch. 6 - A crate of fragile dishes is in the back of a...Ch. 6 - Five balls move through the air as shown in FIGURE...Ch. 6 - The three ropes in FIGURE EX6.1 are tied to a...Ch. 6 - The three ropes in FIGURE EX6.2 are tied to a...Ch. 6 - A football coach sits on a sled while two of his...Ch. 6 - A 20 kg loudspeaker is suspended 2.0 m below the...Ch. 6 - A 65 kg gymnast wedges himself between two closely...Ch. 6 - A construction worker with a weight of 850 N...Ch. 6 - In an electricity experiment, a 1.0 g plastic ball...Ch. 6 - The forces in FIGURE EX6.8 act on a 2.0 kg object....Ch. 6 - The forces in FIGURE EX6.9 act on a 2.0 kg object....Ch. 6 - FIGURE EX6.10 shows the velocity graph of a 2.0 kg...Ch. 6 - FIGURE EX6.11 shows the force acting on a 2.0 kg...Ch. 6 - A horizontal rope is tied to a 50 kg box on...Ch. 6 - A 50 kg box hangs from a rope. What is the tension...Ch. 6 - A 2.0 × 107 kg train applies its brakes with the...Ch. 6 - A 8.0 × 104 kg spaceship is at rest in deep space....Ch. 6 - The position of a 2.0 kg mass is given by x = (2t3...Ch. 6 - A woman has mass of 55 kg. a. What is her weight...Ch. 6 - It takes the elevator in a skyscraper 4.0 s to...Ch. 6 - Zach, whose mass is 80 kg, is in an elevator...Ch. 6 - What thrust does a 200 g model rocket need in...Ch. 6 - What thrust does a 200 g model rocket need in...Ch. 6 - A 20,000 kg rocket has a rocket motor that...Ch. 6 - The earth is 1.50 × 1011 m from the sun. The...Ch. 6 - Bonnie and Clyde are sliding a 300 kg bank safe...Ch. 6 - A stubborn, 120 kg mule sits down and refuses to...Ch. 6 - A 10 kg crate is placed on a horizontal conveyor...Ch. 6 - Bob is pulling a 30 kg filing cabinet with a force...Ch. 6 - A rubber-wheeled kg cart rolls down a 15° concrete...Ch. 6 - A 4000 kg truck is parked on a 15° slope. How big...Ch. 6 - A 1500 kg car skids to a halt on a wet road where...Ch. 6 - A 50,000 kg locomotive is traveling at 10 m/s when...Ch. 6 - You and your friend Peter are putting new shingles...Ch. 6 - An Airbus A320 jetliner has a takeoff mass of...Ch. 6 -
34. A medium-sized jet has a 3.8-m-diameter...Ch. 6 - A 75 kg skydiver can be modeled as a rectangular...Ch. 6 - A 6.5-cm-diameter ball has a terminal speed of 26...Ch. 6 - A 2.0 kg object initially at rest at the origin is...Ch. 6 - A 5.0 kg object initially at rest at the origin is...Ch. 6 - The 1000 kg steel beam in FIGURE P6.39 is...Ch. 6 - Henry, whose mass is 95 kg, stands on a bathroom...Ch. 6 - An accident victim with a broken leg is being...Ch. 6 - Seat belts and air bags save lives by reducing the...Ch. 6 - The piston of a machine exerts a constant force on...Ch. 6 - Compressed air is used to fire a 50 g ball...Ch. 6 - a. A rocket of mass m is launched straight up with...Ch. 6 - A rifle with a barrel length of 60 cm fires a 10 g...Ch. 6 - A truck with a heavy load has a total mass of 7500...Ch. 6 - An object of mass m is at rest at the top of a...Ch. 6 - Prob. 49EAPCh. 6 - A baggage handler drops your 10 kg suitcase onto a...Ch. 6 - A 2.0 kg wood block is launched up a wooden ramp...Ch. 6 - It’s a snowy day and you're pulling a friend along...Ch. 6 - A large box of mass M is pulled across a...Ch. 6 - Prob. 54EAPCh. 6 - You're driving along at 25 m/s with your aunt's...Ch. 6 - The 2.0 kg wood box in FIGURE P6.56 slides down a...Ch. 6 - A 1.0 kg wood block is pressed against a vertical...Ch. 6 - A person with compromised pinch strength in his...Ch. 6 - A ball is shot from a compressed-air gun at twice...Ch. 6 - Starting from rest, a 2500 kg helicopter...Ch. 6 - Astronauts in space "weigh" themselves by...Ch. 6 - A particle of mass m moving along the x-axis...Ch. 6 - At t = 0, an object of mass m is at rest at x = 0...Ch. 6 - At t = 0, an object of mass m is at rest at x = 0...Ch. 6 - Prob. 65EAPCh. 6 - A 60 kg skater is gliding across frictionless ice...Ch. 6 - Prob. 67EAPCh. 6 - Problems 68 and 69 show a free-body diagram. For...Ch. 6 - Problems 68 and 69 show a free-body diagram. For...Ch. 6 - Prob. 70EAPCh. 6 - In Problems 70 through 72 you are given the...Ch. 6 - In Problems 70 through 72 you are given the...Ch. 6 - A block of mass m is at rest at the origin at t =...Ch. 6 - A spring-loaded toy gun exerts a variable force on...Ch. 6 - FIGURE CP6.7S shows an accelerometer, a device for...Ch. 6 - An object moving in a liquid experiences a linear...Ch. 6 - Prob. 77EAPCh. 6 - An object with cross section A is shot...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Let us make the (unrealistic) assumption that a boat of mass m gliding with initial velocity v0 in water is slowed by a viscous retarding force of magnitude bv2, where b is a constant, (a) Find and sketch v(t). How long does it take the boat to reach a speed of v0/l000? (b) Find x(t). How far does the boat travel in this time? Let m = 200 kg, v0 = 2 m/s, and b = 0.2 Nm-2s2.arrow_forwardAn electron is a subatomic particle (m = 9.11 x 10-31 kg) that is subject to electric forces. An electron moving in the +x direction accelerates from an initial velocity of +6.88 x 105 m/s to a final velocity of 2.30 x 106 m/s while traveling a distance of 0.0685 m. The electron's acceleration is due to two electric forces parallel to the x axis: F₁ = 7.84 x 10-17 N, and F2, which points in the -x direction. Find the magnitudes of (a) the net force acting on the electron and (b) the electric force F2. F₂ F₁ VO (a) Number i ! Units N (b) Number Units N eTextbook and Media -> C Σ > F2 F₁ וום 1 0> Assistance Usedarrow_forwardA particle of mass 8.0 kg moves along the horizontal x-axis. In the x direction the only force acting on it is the force F shown in the graph below. The particle starts from rest at x=0. The values indicated in the graph are:F1=4.1N;x1=1.0 m;x2=3.3 m;x3=5.7 m; What is the velocity of the particle at position x2? Give your answer to two significant figures. a)1,4 m/s b)3,4 m/s c)1,7 m/s d)27 m/s e)14 m/s f)0,68 m/s g)20 m/s h)10 m/sarrow_forward
- A particle of mass 5.4 kg moves along the horizontal x-axis. In the x direction the only force acting on it is the force F shown in the graph below. The particle starts from rest at x=0. The values indicated in the graph are:F1=1.0 N;x1=1.0 m;x2=4.0 m;x3=5.7 m; What is the velocity of the particle at position x2? Give your answer to two significant figuresarrow_forwardAn electron is a subatomic particle (m = 9.11 x 10-31 kg) that is subject to electric forces. An electron moving in the +x direction accelerates from an initial velocity of +7.11 x 105 m/s to a final velocity of 2.21 x 106 m/s while traveling a distance of 0.0678 m. The electron's acceleration is due to two electric forces parallel to the x axis: = 7.82 x 10-17 N, and , which points in the -x direction. Find the magnitudes of (a) the net force acting on the electron and (b) the electric forcearrow_forwardAn electron is a subatomic particle (m = 9.11 x 1031 kg) that is subject to electric forces. An electron moving in the +x direction accelerates from an initial velocity of +5.72 x 105 m/s to a final velocity of 2.64 x 106 m/s while traveling a distance of 0.0783 m. The electron's acceleration is due to two electric forces parallel to the x axis: F1 = 9.44 x 10-17 N, and F2, which points in the -x direction. Find the magnitudes of (a) the net force acting on the electron and (b) the electric force F2. F F FF Voarrow_forward
- Determine the force Q-> when the block moves with constant velocity. Express your answer in vector form.arrow_forwarda 2 kg golf ball moves along an x axis according to x(t) = 10t^3 - 2.80t^2 + 7.4t +15 , with x in meters and t in seconds . in unit-vector notation , what is the net force acting on the particle at t= 5.20 s?arrow_forwardA particle of mass 4 kg is undergoing one-dimensional motion. It is subject to a constant force of 45 N, and has an initial speed of 8 m/s. The force is parallel to the initial velocity, both of which are directed in the positive direction along the axis of motion. What is the displacement X in meters , of the particle between t=0, and t=5?arrow_forward
- Particles q1 = +8.0 x 10^-6, q2 = 3.5 x 10^-6, q3 -2.5 x 10^-6 are in a line. Particles q1 and q2 are separated by 0.10 m and particles q2 and q3 are separated by 0.15 m. What is the net force on particle q1?arrow_forwardAn electron is a subatomic particle (m= 9.11 x 10-31 kg) that is subject to electric forces. An electron moving in the +x direction accelerates from an initial velocity of +6.34 x 105 m/s to a final velocity of 1.30 x 106 m/s while traveling a distance of 0.0295 m. The electron's acceleration is due to two electric forces parallel to the x axis: F₁ = 9.54 x 10-17 N, and F2, which points in the -x direction. Find the magnitudes of (a) the net force acting on the electron and (b) the electric force F2. F₂₁ F₂ F₁ (a) Number i (b) Number i Units Units +arrow_forwardA flea jumps by exerting a force of 1.02 x 105N straight down on the ground. A breeze blowing on the flea parallel to the ground exerts a force of 1.20 x 106 N on the flea. Find the direction and magnitude (in m/s2) of the acceleration of the flea if its mass is 6.0 x 107 kg. (Let us assume that Fwind points to the right. We will consider this to be the +x direction and vertical to be the +y direction.) magnitude m/s2 direction ° (measured clockwise from the vertical) Additional Materials O Reading A Tutorialarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Conservative and Non Conservative Forces; Author: AK LECTURES;https://www.youtube.com/watch?v=vFVCluvSrFc;License: Standard YouTube License, CC-BY