Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 6, Problem 43P
Water enters a centrifugal pump axially at atmospheric pressure at a rate of 0.09 m3/s and at a velocity of 5 ms, and leaves in the normal direction along the pump casing, as shown in Fig. P6-40. Determine the force acting on the shaft (which is also the force acting on the bearing of the shaft) in the axial direction.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Water enters a centrifugal pump axially at atmospheric pressure at a rate of 0.10 m3/s and at a velocity of 6 m/s and leaves in the normal direction along the pump casing, as shown in the figure. Determine the force acting on the shaft (which is also the force acting on the bearing of the shaft) in the axial direction
6-16C A constant-velocity horizontal water jet from a stationary nozzle impinges normally on a vertical flat plate that rides on a
nearly frictionless track. As the water jet hits the plate, it begins to move due to the water force. Will the acceleration of the plate
remain constant or change? Explain.
Nozzle
Water jet
6-58 Water is flowing into and discharging from a pipe U-
section as shown in Fig. P6-58. At flange (1), the total
absolute pressure is 200 kPa, and 30 kg/s flows into the pipe.
At flange (2), the total pressure is 150 kPa. At location (3), 8
kg/s of water discharges to the atmosphere, which is at 100
kPa. Determine the total x- and z-forces at the two flanges
connecting the pipe. Discuss the significance of gravity force
for this problem. Take the momentum-flux correction factor
to be 1.03.
8 kg/s
-3 cm
22 kg/s +
- f10 cm
30 kg/s 5 cm
Chapter 6 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 6 - Express Newton’s first, second, and third laws.Ch. 6 - Express Newton’s second law of motion for rotating...Ch. 6 - Is momentum a vector? If so, in what direction...Ch. 6 - Express the conservation of momentum principle....Ch. 6 - Two firefighters are fighting a fire with...Ch. 6 - How do surface forces arise in the momentum...Ch. 6 - Explain the importance of the Reynolds transport...Ch. 6 - What is the importance of the momentum-flux...Ch. 6 - Write the momentum equation for steady...Ch. 6 - In the application of the momentum equation,...
Ch. 6 - A rocket in space (no friction or resistance to...Ch. 6 - Describe in terms of momentum and airflow how a...Ch. 6 - Does it take more, equal, or less power for a...Ch. 6 - In a given location, would a helicopter require...Ch. 6 - A horizontal water jet from a nozzle of constant...Ch. 6 - Describe body forces and surface forces, and...Ch. 6 - A constant-velocity horizontal water jet from a...Ch. 6 - A horizontal water jet of constant velocity V from...Ch. 6 - Water enters a 10-cm-diameter pipe steadily with a...Ch. 6 - A 2.5-cm-diameter horizontal water jet with a...Ch. 6 - A horizontal water jet of constant velocity V...Ch. 6 - A 90 elbow in a horizontal pipe is used to direct...Ch. 6 - Repeat Prob. 6-20 for the case of another...Ch. 6 - A horizontal water jet impinges against a vertical...Ch. 6 - A reducing elbow in a horizontal pipe is used to...Ch. 6 - Repeat Prob. 6-24 for the case of = 125°.Ch. 6 - Reconsider Prob. 627. If the mass of the cart is...Ch. 6 - A 100-ft3/s water jet is moving in the positive...Ch. 6 - Reconsider Prob. 6-26E. Using appropriate...Ch. 6 - A horizontal 5-cm-diameter water jet with a...Ch. 6 - A fan with 24-in-diameter blades moves 2000 cfm...Ch. 6 - A 3-in-diameter horizontal jet of water, with...Ch. 6 - Firefighters are holding a nozzle at the end of a...Ch. 6 - A 5-cm-diameter horizontal jet of water with a...Ch. 6 - A 3-in-diameter horizontal water jet having a...Ch. 6 - An unloaded helicopter of mass 12,000 kg hovers at...Ch. 6 - Water is flowing through a 10-cm-diameter water...Ch. 6 - The weight of a water tank open to the atmosphere...Ch. 6 - Commercially available large wind turbines have...Ch. 6 - Water enters a centrifugal pump axially at...Ch. 6 - An incompressible fluid of density and viscosity ...Ch. 6 - Consider the curved duct of Prob. 6-41, except...Ch. 6 - As a follow-up to Prob. 6-41, it turns out that...Ch. 6 - An incompressible fluid of density and viscosity ...Ch. 6 - Water of density =998.2kg/m3 flows through a...Ch. 6 - Water flowing in a horizontal 25-cm-diameter pipe...Ch. 6 - A sluice gate, which controls flow rate in a...Ch. 6 - How is the angular momentum equation obtained from...Ch. 6 - Prob. 52CPCh. 6 - Prob. 53CPCh. 6 - Prob. 54CPCh. 6 - Water is flowing through a 15-cm-diameter pipe...Ch. 6 - A large lawn sprinkler with two identical arms is...Ch. 6 - Prob. 57EPCh. 6 - Prob. 58PCh. 6 - The impeller of a centrifugal blower has a radius...Ch. 6 - Prob. 60PCh. 6 - Repeat Prob. 6-56 for a water flow rate of 60 L/s.Ch. 6 - Prob. 62PCh. 6 - Water enters the impeller of a centrifugal pump...Ch. 6 - A lawn sprinkler with three identical antis is...Ch. 6 - Prob. 66PCh. 6 - Water flowing steadily at a rate of 0.16 m3/s is...Ch. 6 - Repeat Prob. 6-66 by taking into consideration the...Ch. 6 - Prob. 70PCh. 6 - Water enters vertically and steadily at a rate of...Ch. 6 - Repeal Prob. 6-69 for the case of unequal anus-the...Ch. 6 - Prob. 73PCh. 6 - Prob. 74PCh. 6 - Prob. 75PCh. 6 - Prob. 76PCh. 6 - A spacecraft cruising in space at a constant...Ch. 6 - A 60-kg ice skater is standing on ice with ice...Ch. 6 - Prob. 80PCh. 6 - Water is flowing into and discharging from a pipe...Ch. 6 - Indiana Jones needs So ascend a 10-m-high...Ch. 6 - Prob. 83EPCh. 6 - Prob. 84PCh. 6 - A walnut with a mass of 50 g requires a force of...Ch. 6 - Prob. 86PCh. 6 - Prob. 87PCh. 6 - Show that the force exerted by a liquid jet on a...Ch. 6 - Prob. 89PCh. 6 - Prob. 90PCh. 6 - Prob. 91PCh. 6 - Water enters a two-armed lawn sprinkler along the...Ch. 6 - Prob. 94PCh. 6 - Prob. 95PCh. 6 - Prob. 96PCh. 6 - Water flows steadily through a splitter as shown...Ch. 6 - Prob. 98PCh. 6 - Prob. 99PCh. 6 - Consider water flow through a horizontal, short...Ch. 6 - Consider water flow through a horizontal. short...Ch. 6 - Prob. 103PCh. 6 - Prob. 104PCh. 6 - Prob. 105PCh. 6 - Prob. 106PCh. 6 - The velocity of wind at a wind turbine is measured...Ch. 6 - The ve1ocity of wind at a wind turbine is measured...Ch. 6 - Prob. 109PCh. 6 - Prob. 110PCh. 6 - Prob. 111PCh. 6 - Prob. 112PCh. 6 - Consider the impeller of a centrifugal pump with a...Ch. 6 - Prob. 114P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 6-23 A reducing elbow in a horizontal pipe is used to deflect water flow by an angle 0 = 45° from the flow direction while accelerating it. The elbow discharges water into the atmo- sphere. The cross-sectional area of the elbow is 150 cm² at the inlet and 25 cm² at the exit. The elevation difference between the centers of the exit and the inlet is 40 cm. The mass of the elbow and the water in it is 50 kg. Determine the anchoring force needed to hold the elbow in place. Take the momentum- flux correction factor to be 1.03 at both the inlet and outlet. 150 cm² Water 30.0 kg/s FIGURE P6-23 25 cm² 15- 40 cmarrow_forward(b) A 90° elbow in a horizontal pipe is used to direct water flow upward at a rate of 40 kg/s, as shown in the Figure 2. The diameter of the entire elbow is 10 cm. The elbow discharges water into the atmosphere, and thus the pressure at the exit is the local atmospheric pressure. The elevation difference between the centres of the exit and the inlet of the elbow is 50 cm. The weight of the elbow and the water in it is considered to be negligible. i) Draw an appropriate control volume for the flow and state all your assumptions clearly. ii) Determine the gage pressure at the centre of the inlet of the elbow iii) Determine the anchoring force needed to hold the elbow in place 50 cm Water 40 kg/s Figure 2arrow_forward100 mm 4. Water enters a two-armed lawn sprinkler along the vertical axis at a rate of 60 L/s, and leaves the sprinkler nozzles as 2-cm diameter jets at an angle of u from the tangential direction, as shown in the figure. The length of each sprinkler arm is 0.45 m. Disregarding any frictional effects, determine the rate of rotation n of the sprinkler in rev/min for (a) 0 =0°, (b) 0 =30° r=0.45 marrow_forward
- Consider the flow system sketched in Fig. The fluid is water, and the pump is a centrifugal pump. Generate a qualitative plot of the pump net head as a function of the pump capacity. On the figure, label the shutoff head, the free delivery, the pump performance curve, the system curve, and the operating pointarrow_forward6-54 The impeller of a centrifugal pump has inner and outer diameters of 15 and 35 cm, respectively, and a flow rate of 0.15 m³/s at a rotational speed of 1400 rpm. The blade width of the impeller is 8 cm at the inlet and 3.5 cm at the outlet. If water enters the impeller in the radial direction and exits at an angle of 60° from the radial direction, determine the minimum power requirement for the pump. a = 60 Impeller regionarrow_forwardThe water tank in the figure is being filled through section (1) at v1 = 4 m/s and through section (3) at V3 = 5 m/s. Find the rate of change dh/dt if the tank diameter is d = 1 m and exit velocity is v2 = 6 m/s.arrow_forward
- Answer the following questions: a. Air lows past an object and exits as a free jet as shown in the figure. Because of the obstruction, the exit velocity is non-uniform with magnitude of 4 m/s from r = 0 to r=0.5 m and 12 m/s from r = 0.5 m/s to r = 1.0 m. It is initially calculated that the average velocity is 10 m/s, using a differential area, dA=2rrdr, what is the value of the momentum correction factor, B? 2-m-dia. a Air Wake 1-m dia. Exit -4 m/s -12 m/s b. A hydraulic turbine has 85 m of head available at a flow rate of 250 L/s. If the fluid is water and the turbine's overall efficiency is 78%, what is the mechanical power, in kW, it extracts from the water?arrow_forwardA water jet with volume flow rate of 3 m³/s is moving in the positive x- direction at a speed of 6 m/s. The stream hits a stationary splitter, such that half of the flow is diverted upward at 45º and the other half is directed downward at 45°, and both streams have a final average speed of 6 m/s. The gravitational effects and friction loss are considered to be negligible. Determine the x- and z-components of the force required to hold the splitter in place against the water force. Note that the pressure of the water jet at inlet and outlet sections is the atmospheric pressure and the density of water is taken as 1000 kg/m³. 3 m³/s 6 m/s 45° A 45° Figure 3.1 2 FR: FRXarrow_forwardkg Water (p = 1000- -) flows through the elbow below. The diameter of both the inlet and outlet is 1.1 cm, and the velocity through the nozzle is V =4.5 m/s. The outlet m³ has an angle of 0 =15 degrees. The water is at a pressure of 29 kPa (gauge). Find the magnitude of the force on the elbow. 0 Varrow_forward
- A three-arm sprinkler is used to water a garden by rotating in a horizontal plane. Water enters the sprinkler along the axis of rotation at a rate of 40 L/s and leaves the 1.2-cm-diameter nozzles in the tangential direction. The central sprinkler bearing applies a retarding torque of 50 N-m due to friction at the anticipated operating speeds. Part A For a normal distance of 40 cm between the axis of rotation and the center of the nozzles, determine the rate of rotation of the sprinkler. Express your answer to three significant figures. V ΑΣφ I1 vec ? W = rad/s Submit Request Answerarrow_forwardThe figure shows a portion of a fire protection system in which a pump draws water at 60°F(v=1.21 x10-5 m² from a reservoir and delivers it to a point B at the flow rate of 1500 gal/min. Calculate the required height of the the water level in the tank in order to maintain 5.0 Psig pressure at point Aarrow_forwardThe force that drives the flow of fluids is the pressure difference; a pump works by raising thepressure of a fluid (converting it into mechanical work of its axis and energy of flow). It is determined thatA gasoline pump consumes 3.8 KW of electrical power when it is working. If the difference ofpressures between pump discharge and suction is 7 KPa, and the changes in speed and head aredespicable.Determine the maximum possible volumetric flow rate of the gasoline. (see img)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
BEARINGS BASICS and Bearing Life for Mechanical Design in 10 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=aU4CVZo3wgk;License: Standard Youtube License