Universe
11th Edition
ISBN: 9781319039448
Author: Robert Geller, Roger Freedman, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 42Q
To determine
Whether the emission line or absorption line would be observed from a distant galaxy, when observing the ultraviolet spectral line of ionized oxygen in a distant galaxy’s spectrum. It is given that the ultraviolet telescope of FUSE spacecraft is aimed at the distant galaxy.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Your research team analysis the light of a mysterious object in space. By using a spectrometer,you can observe the following spectrum of the object. The Hα line peak is clearly visible. Answer the questions from given graph
(a) Mark the first four spectral lines of hydrogen (Hα, Hβ, Hγ, Hδ) in the spectrum.(b) Determine the radial velocity and the direction of the object’s movement.(c) Calculate the distance to the observed object.(d) What possible type of object is your team observing?
In the graph below, the yellow region shows the AM 1.5 solar spectrum. The area indicated by the blue area represents the AM 1.0 spectrum. The boundaries of the AM 1.0 spectrum;
When λ = between 250nm and 1000nm Pλ = 1x109Wm^(-2) m^(-1)
When λ = between 1000nm and 2000nm Pλ = 0.25x109W m^(-2) m^(-1)
In that case;
a-) Find the radiation intensity (I) and photon flux () for AM 1.0.
b-) If the radiation intensity in the option a comes to the silicon solar cell with a band gap of 1.12eV, how much will the photo-current be produced?
What is the wavelength in meters observed with a frequency of (4.5x10^15)?
Answer with 2 significant figures and it must be in scientific notation.
Note: Your answer is assumed to be reduced to the highest power possible.
Your Answer:
Answer
x10
units
Chapter 6 Solutions
Universe
Ch. 6 - Prob. 1CCCh. 6 - Prob. 2CCCh. 6 - Prob. 3CCCh. 6 - Prob. 4CCCh. 6 - Prob. 5CCCh. 6 - Prob. 6CCCh. 6 - Prob. 7CCCh. 6 - Prob. 8CCCh. 6 - Prob. 9CCCh. 6 - Prob. 10CC
Ch. 6 - Prob. 11CCCh. 6 - Prob. 1QCh. 6 - Prob. 2QCh. 6 - Prob. 3QCh. 6 - Prob. 4QCh. 6 - Prob. 5QCh. 6 - Prob. 6QCh. 6 - Prob. 7QCh. 6 - Prob. 8QCh. 6 - Prob. 9QCh. 6 - Prob. 10QCh. 6 - Prob. 11QCh. 6 - Prob. 12QCh. 6 - Prob. 13QCh. 6 - Prob. 14QCh. 6 - Prob. 15QCh. 6 - Prob. 16QCh. 6 - Prob. 17QCh. 6 - Prob. 18QCh. 6 - Prob. 19QCh. 6 - Prob. 20QCh. 6 - Prob. 21QCh. 6 - Prob. 22QCh. 6 - Prob. 23QCh. 6 - Prob. 24QCh. 6 - Prob. 25QCh. 6 - Prob. 26QCh. 6 - Prob. 27QCh. 6 - Prob. 28QCh. 6 - Prob. 29QCh. 6 - Prob. 30QCh. 6 - Prob. 31QCh. 6 - Prob. 32QCh. 6 - Prob. 33QCh. 6 - Prob. 34QCh. 6 - Prob. 35QCh. 6 - Prob. 36QCh. 6 - Prob. 37QCh. 6 - Prob. 38QCh. 6 - Prob. 39QCh. 6 - Prob. 40QCh. 6 - Prob. 41QCh. 6 - Prob. 42QCh. 6 - Prob. 43QCh. 6 - Prob. 44QCh. 6 - Prob. 45Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Answer these questions for celestial bodies at each of the following temperatures and then draw a conclusion about the relationship between temperature and wavelength of maximum intensity. What is the wavelength of maximum intensity? In which part of the electromagnetic spectrum (gamma-ray, X-ray, UV, visible light, IR, microwave, or radio) does this peak wavelength lie? Give an example of an object that might have this temperature. a. 50 K b. 500 K c. 5000 K d. 50,000 Karrow_forwardStar X has lines of ionized helium in its spectrum, and star Y has bands of titanium oxide. Which is hotter? Why? The spectrum of star Z shows lines of ionized helium and also molecular bands of titanium oxide. What is strange about this spectrum? Can you suggest an explanation?arrow_forwardA planet has been discovered orbiting a K type main sequence star. A spectrum taken of this planet shows a blackbody shape to the spectrum that peaks at a wavelength of 8.67x10-5 cm. a) Find the temperature of this planet. Hint: Always make sure your units match!!!! b) Describe the prospects for life as we know it on this planet. Note that water remains in a liquid state between temperatures of 273 K and 373 K.arrow_forward
- 10:49 LTE O < All iCloud Imagine that you are observing a star and you find the wavelength of peak emission for the star to be 400 nm. What would the wavelength of peak emission be for a new star that has a surface temperature that is a quarter of the original star? Using the same pair of stars from the first question, ● how does the luminosity (the energy output) of each star compare if we assume that both stars are the same size? (Please provide a specific factor or proportion) What type of radiation/light (from the electromagnetic spectrum) is each star emitting? Now imagine that we determine that the wavelength of peak emission of the original star was determined to be bluer than it should be based on other observations. Would this indicate that the star is moving towards us or away from us relatively speaking through space? 0arrow_forwardAstronomers cannot map all of the material in our galaxy using visible light. a) Why is it that they cannot use visible light? b) Which regions of the EM spectrum are used to map the galaxy?arrow_forwardexplain how emission and absorption involve semiclassical physics?arrow_forward
- Why don’t we see hydrogen Balmer lines in the spectra of stars with temperatures of 3,200 K? a. There is no hydrogen in stars this cool. b. The stars are hot enough that most of the hydrogen is ionized and the atoms cannot absorb energy. c. These stars are so cool that nearly all of the hydrogen atoms are in the ground state. d. Stars of this temperature are too cool to produce an absorption spectrum. e. Stars of this temperature are too hot to produce an absorption spectrum.arrow_forwardA)The star 58 Eridani is a feint but naked-eye star similar to the Sun. Suppose that you are observing this star in the night sky without a telescope. Ignoring any interstellar extinction or atmospheric absorption, approximately how many photons per second arrive at your retina? Show all steps in calculation . B) The Mid-infared Instrument (MIRI , camera and spectrograph ) on the James Webb Space Telescope operates in the band 5-28 µm . For 58 Eridani , approximatley how many photons per second can be used by this instrument ? Assume that MIRI takes all the photons from the full JWST mirror . Show all steps in calcultation . Describe breifly two or three other factors which play a role in determining the sensetivitu of an instrument such as MIRI ?arrow_forwardB2. A spherical star is detected by an astronaut in a spacecraft at a distance z of 1.5×10¹2 kilometers. The star can be regarded as a blackbody with a temperature of 11,300 K. The radius r of the star is 3.5×106 kilometers. (a) Calculate the radiant exitance and the radiant intensity of the star. (b) Calculate the irradiance that can be detected by the astronaut. (c) The photodetector used by the astronaut in the spacecraft has a responsivity of 120 kV/W and an photosensitive area of 0.5 mm². Calculate the output voltage of the detector in the detection of the star. CAMINS +II+ Figure B2arrow_forward
- A photon has a frequency of 1.14 x 10^15 Hz. What is the energy of the photon? Recall E = hf, where E is energy in Joules, h is Planck's constant = 6.62 x 10^-34 J/s, and f is frequency (Hz).arrow_forwardTutorial Star A has a temperature of 5,000 K and Star B has a temperature of 6,000 K. At what wavelengths (in nm) will each of these star's intensity be at its maximum? If the temperatures of the stars increase, the wavelength of maximum intensity. What is the temperature (in K) of a star that appears most intense at a wavelength of 829 nm? Part 1 of 4 Wien's Law tells us how the temperature of a star determines the wavelength of maximum intensity or at what wavelength the star appears brightest. 2.90 x 106 TK If the temperature is in kelvin (K) then A is in nanometers (nm). Anm ^A = AB = = Part 2 of 4 To determine the wavelengths of maximum intensity for the two stars: 2.90 x 106 2.90 x 106 K nm nmarrow_forward10-3 W). A laser pointer with a wavelength λ = 550 nm has an output power of 5.80 mW (1 mW = What is the laser pointer's output in photons per second? Recall that Planck's constant is h = 6.63 x 10-34 Js. n = sec ond To use scientific (exponential) notation for your answer, express it using "E". For example, 1.23 x 1014 is entered as 1.23E14.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning