Universe
11th Edition
ISBN: 9781319039448
Author: Robert Geller, Roger Freedman, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 3Q
To determine
The reason why the light rays that enter the telescope form an astronomical object are essentially parallel.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
To focus X rays, such as those collected in the Chandra X–Ray Observatory, it is necessary to use
a.
a lens.
b.
a concave glass mirror, such as that used in an optical reflecting telescope.
c.
a metal dish, such as that used in a radio telescope.
d.
grazing incidence optics shaped like a converging, hollow tube.
e.
a mesh of conducting wires.
Asap plzzz
Design an eye for a(n) using a concave spherical mirror such that the image of an object 1.0 m tall and 10 m away fully fills its 1.0-cm square photosensitive detector (which is movable for focusing purposes). Where should this detector be located with respect to the mirror? What should be the focal length of the mirror? Draw a ray diagram.
Chapter 6 Solutions
Universe
Ch. 6 - Prob. 1CCCh. 6 - Prob. 2CCCh. 6 - Prob. 3CCCh. 6 - Prob. 4CCCh. 6 - Prob. 5CCCh. 6 - Prob. 6CCCh. 6 - Prob. 7CCCh. 6 - Prob. 8CCCh. 6 - Prob. 9CCCh. 6 - Prob. 10CC
Ch. 6 - Prob. 11CCCh. 6 - Prob. 1QCh. 6 - Prob. 2QCh. 6 - Prob. 3QCh. 6 - Prob. 4QCh. 6 - Prob. 5QCh. 6 - Prob. 6QCh. 6 - Prob. 7QCh. 6 - Prob. 8QCh. 6 - Prob. 9QCh. 6 - Prob. 10QCh. 6 - Prob. 11QCh. 6 - Prob. 12QCh. 6 - Prob. 13QCh. 6 - Prob. 14QCh. 6 - Prob. 15QCh. 6 - Prob. 16QCh. 6 - Prob. 17QCh. 6 - Prob. 18QCh. 6 - Prob. 19QCh. 6 - Prob. 20QCh. 6 - Prob. 21QCh. 6 - Prob. 22QCh. 6 - Prob. 23QCh. 6 - Prob. 24QCh. 6 - Prob. 25QCh. 6 - Prob. 26QCh. 6 - Prob. 27QCh. 6 - Prob. 28QCh. 6 - Prob. 29QCh. 6 - Prob. 30QCh. 6 - Prob. 31QCh. 6 - Prob. 32QCh. 6 - Prob. 33QCh. 6 - Prob. 34QCh. 6 - Prob. 35QCh. 6 - Prob. 36QCh. 6 - Prob. 37QCh. 6 - Prob. 38QCh. 6 - Prob. 39QCh. 6 - Prob. 40QCh. 6 - Prob. 41QCh. 6 - Prob. 42QCh. 6 - Prob. 43QCh. 6 - Prob. 44QCh. 6 - Prob. 45Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- People are often bothered when they discover that reflecting telescopes have a second mirror in the middle to bring the light out to an accessible focus where big instruments can be mounted. “Don’t you lose light?” people ask. Well, yes, you do, but there is no better alternative. You can estimate how much light is lost by such an arrangement. The primary mirror (the one at the bottom in Figure 6.6) of the Gemini North telescope is 8 m in diameter. The secondary mirror at the top is about 1 m in diameter. Use the formula for the area of a circle to estimate what fraction of the light is blocked by the secondary mirror. Figure 6.6 Focus Arrangements for Reflecting Telescopes. Reflecting telescopes have different options for where the light is brought to a focus. With prime focus, light is detected where it comes to a focus after reflecting from the primary mirror. With Newtonian focus, light is reflected by a small secondary mirror off to one side, where it can be detected (see also Figure 6.5). Most large professional telescopes have a Cassegrain focus in which light is reflected by the secondary mirror down through a hole in the primary mirror to an observing station below the telescope.arrow_forwardWhat happens to a light wave when it travels from air into glass? (a) Its speed remains the same. (b) Its speed increases. (c) Its wavelength increases. (d) Its wavelength remains the same. (e) Its frequency remains the same.arrow_forwardIn a reflecting telescope the objective is a concave mirror of radius of curvature 2m and an eyepiece is a convex lens of focal length 5 cm. Find the apparent size of a 25-m tree at a distance of 10 km that you would perceive when looking through the telescope.arrow_forward
- The focal length of a lens in a box camera is 11 mm. The fixed distance between the lens and the film (image) is 5 mm. If the object is clearly focused on the film, how far must the object be from the lens? 4)arrow_forwardA small telescope has an objective lens of focal length 144 cm and an eyepiece of focal length 6.0 cm. What is the magnifying power of the telescope? What is the separation between the objective and the eyepiece?arrow_forwardWhich of the following items are usually seen as reasons why reflecting telescopes are more commonly used by astronomers than refracting telescopes? Select all that apply. Select one or more alternatives: Reflecting telescopes are less likely to distort images by treating different wavelengths of the light in different ways. Reflecting telescopes are easier to protect, because their mirrored surfaces are covered by glass. Reflecting telescopes are more easily pointed at specific objects. Large reflectors are easier to build than refractors. Reflecting telescopes were invented first, and have always been the primary tool of astronomers.arrow_forward
- The objective mirror of a telescope has a diameter of 5000 mm and a focal length of 8000 mm. An eyepiece has a focal length of 40 mm. What is the magnification of the telescope using this eyepiece?arrow_forward2. Please refer to part (b) of Figure 1 included with this quiz. Here, theta (the angle the incident ray makes with respect to the vertical) is 65.8 degrees. What is d (the distance between the ray emerging from the bottom of the glass and where the ray would have been if it had continued straight on with no glass to refract it)? 5.92 m 3.48 m 2.44 m 4.87 marrow_forwardWhich statement about the Refraction of light waves is correct? All of theses are correct. O Refraction occurs because light travels at difference speeds in different materials. O Refraction is a process where light bends as it travels from one material to another. Refraction can be used to create a telescope.arrow_forward
- Q. No 06: Show that Î;(cos² – sin² o + 2i sin ø cos ø) = 2h²iº, where o is the azimuthal angle.arrow_forwardA telescope is used to resolve two distant stars. By what factor will the resolution of the telescope change if the diameter of the lens is doubled? a)The resolution will increase by a factor of 4 b)The resolution will increase by a factor of 2 c)The resolution will not change, although more light will be collected. d)The resolution will decrease by a factor of 2 e)The resolution will decrease by a factor of 4 f)arrow_forwardLarge telescopes often have small fields of view, i.e. it can only see a very small corner of the sky. For example, the Hubble Space Telescope (HST) Advanced Camera has a field of view that is roughly square and about 0.055 degree on a side. Calculate the angular area of the HST's field of view in square degrees.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY