An accident victim with a broken leg is being placed in traction. The patient wears a special boot with a pulley attached to the sole. The foot and boot together have a mass of 4.0 kg, and the doctor has decided to hang a 6.0 kg mass from the rope. The boot is held suspended by the ropes, as shown in FIGURE P6.41, and does not touch the bed. a. Determine the amount of tension in the rope by using Newton's laws to analyze the hanging mass. b. The net traction force needs to pull straight out on the leg. What is the proper angle ? for the upper rope? c. What is the net traction force pulling on the leg? Hint: If the pulleys are frictionless, which we will assume, the tension in the rope is constant from one end to the other. FIGURE P6.41
An accident victim with a broken leg is being placed in traction. The patient wears a special boot with a pulley attached to the sole. The foot and boot together have a mass of 4.0 kg, and the doctor has decided to hang a 6.0 kg mass from the rope. The boot is held suspended by the ropes, as shown in FIGURE P6.41, and does not touch the bed. a. Determine the amount of tension in the rope by using Newton's laws to analyze the hanging mass. b. The net traction force needs to pull straight out on the leg. What is the proper angle ? for the upper rope? c. What is the net traction force pulling on the leg? Hint: If the pulleys are frictionless, which we will assume, the tension in the rope is constant from one end to the other. FIGURE P6.41
An accident victim with a broken leg is being placed in traction. The patient wears a special boot with a pulley attached to the sole. The foot and boot together have a mass of 4.0 kg, and the doctor has decided to hang a 6.0 kg mass from the rope. The boot is held suspended by the ropes, as shown in FIGURE P6.41, and does not touch the bed.
a. Determine the amount of tension in the rope by using Newton's laws to analyze the hanging mass.
b. The net traction force needs to pull straight out on the leg. What is the proper angle ? for the upper rope?
c. What is the net traction force pulling on the leg?
Hint: If the pulleys are frictionless, which we will assume, the tension in the rope is constant from one end to the other.
23.
What is the velocity of a beam of electrons that goes undeflected when passing through perpendicular electric and magnetic fields of magnitude 8.8 X 103 V/m and 7.5 X 10-3 T. respectively? What is the radius of the electron orbit if the electric field is turned off?
10.
A light bulb emits 25.00 W of power as visible light. What are the average electric and magnetic fields from the light at a distance of 2.0 m?
9.
Some 1800 years ago Roman soldiers effectively used slings as deadly weapons. The length of these slings averaged about 81 cm and the lead shot that they used weighed about 30 grams. If in the wind up to a release, the shot rotated around the Roman slinger with a period of .15 seconds.
Find the maximum acceleration of the shot before being released in m/s^2 and report it to two significant figures.
Chapter 6 Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.