
Concept explainers
a.
Normalization:
The process used to minimize data redundancy and dependency in a relational
Second normal form (2NF):
- The value of all non-primary key attributes should be dependent on the primary key attribute.
- If any attribute is depending on the partial primary key then it should determine the other attributes for an instance of the entity.
- The partial dependencies should be removed from the data model.
Third normal form (3NF):
- The value of any non-primary key attributes will not depend on any other non-primary key attributes.
- If any non-primary key attributes depend on any other non-primary key attribute then it should be moved or deleted.
- It is termed as transitive dependency.
Partial dependency:
A partial dependency exists at that time of an attributes depends only a part of primary key. This dependency is related with 1st normal form.
Transitive dependency:
A transitive dependency exists at that time of an attributes depends on another attribute which is not part of primary key.
Functional dependency:
An association between two attributes or two set of attributes in a same relational database table, which is having some constraints is known as functional dependency.
- In a table one attribute is functionally dependent on another attribute to take one value.
a.

Explanation of Solution
Construct the dependency diagram with all partial and transitive dependencies:
The relational schema for given INVOICE table is given below:
Invoice(INV_NUM, PROD_NUM, SALE_DATE, PROD_LABEL, VEND_CODE, VEND_NAME, QUANT_SOLD, PROD_PRICE)
- Here, “INV_NUM” and “PROD_NUM” indicates the primary key.
The representation of dependency diagram with all partial and transitive dependencies is shown below:
Explanation:
In the above dependency diagram,
- The partial dependencies are,
INV_NUM -> (SALE_DATE)
PROD_NUM -> (PROD_LABEL, VEND_CODE, VEND_NAME, PROD_PRICE)
- The transitive dependency is,
VEND_CODE -> (VEND_NAME)
b.
Normalization:
The process used to minimize data redundancy and dependency in a relational database is known as normalization. The database table is divided into two or more tables and defines the relationship between those tables.
Second normal form (2NF):
- The value of all non-primary key attributes should be dependent on the primary key attribute.
- If any attribute is depending on the partial primary key then it should determine the other attributes for an instance of the entity.
- The partial dependencies should be removed from the data model.
Third normal form (3NF):
- The value of any non-primary key attributes will not depend on any other non-primary key attributes.
- If any non-primary key attributes depend on any other non-primary key attribute then it should be moved or deleted.
- It is termed as transitive dependency.
Partial dependency:
A partial dependency exists at that time of an attributes depends only a part of primary key. This dependency is related with 1st normal form.
Transitive dependency:
A transitive dependency exists at that time of an attributes depends on another attribute which is not part of primary key.
Functional dependency:
An association between two attributes or two set of attributes in a same relational database table, which is having some constraints is known as functional dependency.
- In a table one attribute is functionally dependent on another attribute to take one value.
b.

Explanation of Solution
Construct the dependency diagram by removing all partial dependencies:
The new dependency diagram is represented by removing all partial dependencies in INVOICE table.
First table:
The relational schema for first table is given below:
3NF(INV_NUM, PROD_NUM, SALE_DATE, QUANT_SOLD)
- Here, “INV_NUM” and “PROD_NUM” indicates the primary keys.
- The relation is in third normal form (3NF), since there is no transitive dependency and no repeated attributes.
The representation of dependency diagram removes all partial dependencies in first table are shown below:
Second table:
The relational schema for second table is given below:
3NF(INV_NUM, SALE_DATE)
- Here, “INV_NUM” indicates the primary key.
- The relation is in third normal form (3NF), since there is no transitive dependency and no repeated attributes.
The representation of dependency diagram removes all partial dependencies in second table are shown below:
Third table:
The relational schema for third table is given below:
2NF(PROD_NUM, PROD_LABEL, VEND_CODE, VEND_NAME, PROD_PRICE)
- Here, “PROD_NUM” indicates the primary key.
- The relation is in third normal form (2NF), since there is transitive dependency in table.
The representation of dependency diagram removes all partial dependencies in third table are shown below:
c.
Normalization:
The process used to minimize data redundancy and dependency in a relational database is known as normalization. The database table is divided into two or more tables and defines the relationship between those tables.
Second normal form (2NF):
- The value of all non-primary key attributes should be dependent on the primary key attribute.
- If any attribute is depending on the partial primary key then it should determine the other attributes for an instance of the entity.
- The partial dependencies should be removed from the data model.
Third normal form (3NF):
- The value of any non-primary key attributes will not depend on any other non-primary key attributes.
- If any non-primary key attributes depend on any other non-primary key attribute then it should be moved or deleted.
- It is termed as transitive dependency.
Partial dependency:
A partial dependency exists at that time of an attributes depends only a part of primary key. This dependency is related with 1st normal form.
Transitive dependency:
A transitive dependency exists at that time of an attributes depends on another attribute which is not part of primary key.
Functional dependency:
An association between two attributes or two set of attributes in a same relational database table, which is having some constraints is known as functional dependency.
- In a table one attribute is functionally dependent on another attribute to take one value.
c.

Explanation of Solution
Construct the dependency diagram by removing all transitive dependencies:
The new dependency diagram is represented by removing all transitive dependencies in INVOICE table.
First table:
The relational schema for first table is given below:
3NF(INV_NUM, PROD_NUM, QUANT_SOLD)
- Here, “INV_NUM” and “PROD_NUM” indicates the primary keys.
- The relation is in third normal form (3NF), since there is no transitive dependency and no repeated attributes.
The representation of dependency diagram removes all partial dependencies in first table are shown below:
Second table:
The relational schema for second table is given below:
3NF(INV_NUM, SALE_DATE)
- Here, “INV_NUM” indicates the primary key.
- The relation is in third normal form (3NF), since there is no transitive dependency and no repeated attributes.
The representation of dependency diagram removes all transitive dependencies in second table are shown below:
Third table:
The relational schema for third table is given below:
3NF(VEND_CODE, VEND_NAME)
- Here, “VEND_CODE” indicates the primary key.
- The relation is in third normal form (3NF), since there is no transitive dependency and no repeated attributes.
The representation of dependency diagram removes all transitive dependencies in third table are shown below:
Fourth table:
The relational schema for final table is given below:
2NF(PROD_NUM, PROD_LABEL, VEND_CODE, PROD_PRICE)
- Here, “PROD_NUM” indicates the primary key.
- The relation is in third normal form (3NF), since there is no transitive dependency and no repeated attributes.
The representation of dependency diagram removes all transitive dependencies are shown below:
d.
Explanation of Solution
The representation of Crow’s Foot Entity Relational Diagram (ERD) is shown below:
The following data model shows the solution for the given question.
Explanation:
- In the above data model, one invoice can contains many invoice line.
- The “INVOICE” entity contains the “INV_NUM” and “SALE_DATE” attributes.
- The primary key of “INVOICE” entity is “INV_NUM”.
- The “INV_LINE” entity contains the “INV_NUM”, “PROD_NUM” and “QUANT_SOLD” attributes.
- The primary and foreign key of this entity is “INV_NUM”.
- The foreign key of this entity is “PROD_NUM”.
- The “INVOICE” entity contains the “INV_NUM” and “SALE_DATE” attributes.
- The product is written in more than one invoice line.
- The “PRODUCT” entity contains the “PROD_NUM”, “VEND_CODE”, “PROD_LABEL”, and “PROD_PRICE” attributes.
- The primary key of “PROD_NUM” for this entity.
- The foreign key of this entity is “VEND_CODE”.
- The “PRODUCT” entity contains the “PROD_NUM”, “VEND_CODE”, “PROD_LABEL”, and “PROD_PRICE” attributes.
- The vendor supplies more than one product.
- The “VENDOR” entity contains the “VEND_CODE” and “VEND_NAME” attributes.
- The primary key of “VEND_CODE” entity.
- The “VENDOR” entity contains the “VEND_CODE” and “VEND_NAME” attributes.
Want to see more full solutions like this?
- using r languagearrow_forwardCompute a Monte Carlo estimate o of 0.5 0 = L ē -xdx 0 by sampling from Uniform(0, 0.5). Find another Monte Carlo estimator 0* by sampling from the exponential distribution. Use simulations to estimate the variance of Ô and ⑦*, which estimator has smaller variance?arrow_forwardimport tkint class ShowInfoGUI:def __init__(self):# Create the main windowself.main_window = tkinter.Tk() # Create two framesself.top_frame = tkinter.Frame(self.main_window)self.bottom_frame = tkinter.Frame(self.main_window)arrow_forward
- JOB UPDATE Apply on- COMPANY VinkJobs.com @ OR Search "Vinkjobs.com" on Google JOB PROFILE JOB LOCATION INTELLIFLO APPLICATION DEVELOPER MULTIPLE CITIES GLOBAL LOGIC SOFTWARE ENGINEER/SDET DELHI NCR SWIGGY SOFTWARE DEVELOPMENT BENGALURU AVALARA SOFTWARE ENGINEER (WFH) MULTIPLE CITIES LENSKART FULL STACK DEVELOPER MULTIPLE CITIES ACCENTURE MEDPACE IT CUST SERVICE SOFTWARE ENGINEER MUMBAI MUMBAI GENPACT BUSINESS ANALYST DELHI NCR WELOCALIZE WORK FROM HOME MULTIPLE CITIES NTT DATA BPO ASSOCIATE DELHI NCRarrow_forwardHow can predictive and prescriptive modeling be used to measure operational performance in real-time? Do you see any potential downsides to this application? Can you provide an example?arrow_forwardTracing the Recursion. Tracing the Recursion. Observe the recursive solution provided below. 1. Which line(s) of this program define(s) the base case of sumOfDigits() method? 2. Which line(s) of this program include recursive call(s)? 3. Trace the recursion below. You must show the trace step by step; otherwise – little to no credit! 4. Show me the final result! 1 public class SumOfDigitsCalculator { 30 123456 7% 8 public static void main(String[] args) { System.out.println(sumOfDigits(1234)); } public static int sumOfDigits (int number) { if (number == 0) 9 10 11 12 } 13 } else return 0; return number % 10 + sumOfDigits (number / 10);arrow_forward
- module : java 731 Question3: (30 MARKS) Passenger Rail Agency for South Africa Train Scheduling System Problem Statement Design and implement a train scheduling system for Prasa railway network. The system should handle the following functionalities: 1. Scheduling trains: Allow the addition of train schedules, ensuring that no two trains use the same platform at the same time at any station. 2. Dynamic updates: Enable adding new train schedules and canceling existing ones. 3. Real-time simulation: Use multithreading to simulate the operation of trains (e.g., arriving, departing). 4. Data management: Use ArrayList to manage train schedules and platform assignments. Requirements 1. Add Train Schedule, Cancel Scheduled Train, View Train Schedules and Platform Management 2. Concurrency Handling with Multithreading i.e Use threads to simulate train operations,…arrow_forwardplease answer my 2 java questions correctly , include all comments etc and layout and structure must be correct , follow the requirementsarrow_forwardQuestion3: Passenger Rail Agency for South Africa Train Scheduling System Problem Statement (30 MARKS) Design and implement a train scheduling system for Prasa railway network. The system should handle the following functionalities: 1. Scheduling trains: Allow the addition of train schedules, ensuring that no two trains use the same platform at the same time at any station. 2. Dynamic updates: Enable adding new train schedules and canceling existing ones. 3. Real-time simulation: Use multithreading to simulate the operation of trains (e.g., arriving, departing). 4. Data management: Use ArrayList to manage train schedules and platform assignments. Requirements 1. Add Train Schedule, Cancel Scheduled Train, View Train Schedules and Platform Management 2. Concurrency Handling with Multithreading i.e Use threads to simulate train operations, Each train runs as a separate thread, simulating its arrival, departure, and travel status. 3. Use ArrayList to manage train schedules for each…arrow_forward
- Database Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781305627482Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781285196145Author:Steven, Steven Morris, Carlos Coronel, Carlos, Coronel, Carlos; Morris, Carlos Coronel and Steven Morris, Carlos Coronel; Steven Morris, Steven Morris; Carlos CoronelPublisher:Cengage LearningA Guide to SQLComputer ScienceISBN:9781111527273Author:Philip J. PrattPublisher:Course Technology Ptr
- Principles of Information Systems (MindTap Course...Computer ScienceISBN:9781285867168Author:Ralph Stair, George ReynoldsPublisher:Cengage Learning




